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Université Libre de Bruxelles

Brussels, Belgium
hamed.razavi.khosroshahi@ulb.be

Natarajan Chidambaran
Université de Mons
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Abstract

Real-world segmentation tasks in digital pathology re-
quire a great effort from human experts to accurately an-
notate a sufficiently high number of images. Hence, there
is a huge interest in methods that can make use of non-
annotated samples, to alleviate the burden on the annota-
tors. In this work, we evaluate two classes of such methods,
semi-supervised and active learning, and their combination
on a version of the GlaS dataset for gland segmentation in
colorectal cancer tissue with missing annotations. Our re-
sults show that semi-supervised learning benefits from the
combination with active learning and outperforms fully su-
pervised learning on a dataset with missing annotations.
However, an active learning procedure alone with a simple
selection strategy obtains results of comparable quality.

1. Introduction

Deep learning methods have demonstrated their ability

to obtain state-of-the-art performance for image segmenta-

tion in different domains, from natural images to more com-

plex problems such as biomedical images [3, 35]. However,

training a deep learning model requires extensive and well-

annotated datasets, which are not always available.

In critical domains such as digital pathology, annotations

∗These authors contributed equally to the work.

need to be provided by highly trained experts. Providing

segmentation masks is a particularly costly operation, for

which the annotators have to invest a relatively high amount

of time and, in real-world medical applications, the scarcity

of annotations is very common [56]. Machine learning

models that can operate with partially annotated datasets

would therefore alleviate the annotation effort.

Several techniques have been applied to segmentation

tasks on partially annotated datasets in medical applica-

tions [53]. Notably, semi-supervised learning (SSL) meth-

ods make use of both annotated and non-annotated samples

in a fully automated fashion [60]. Select the labeled data

to use is however still a challenge. Its results, therefore,

depend heavily on the quality of the labeled data initially

available. Conversely, active learning (AL) involves a hu-

man annotator in the process, proposing a set of carefully

selected unlabeled samples to an expert who will provide

the required annotations, in order to minimize the effort re-

quired by the expert without sacrificing the expected qual-

ity of the results. However, the performance of AL strongly

depends on its initial labeled pool [23, 28]. To combine

the strength of each method while alleviating their issues,

efforts have been made to combine AL and SSL for im-

age segmentation [51, 64], but their application to digital

pathology is still very limited [28].

In this work, we explore the combination of SSL and

AL in the context of histopathology semantic image seg-

mentation, using a state-of-the-art model for this task [48].

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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More precisely, we consider four AL selection criteria and

combine them with a family of novel SSL methods that ob-

tained state-of-the-art results for classification [50, 65, 73],

to evaluate their potential on a segmentation task. We use

the GlaS dataset for the assessment of gland segmentation

in colorectal cancer tissue [48, 49], from which we remove

annotations to simulate a realistic scenario in a controlled

manner. We assess (i) the efficiency of the combination

of SSL and AL in the case of histopathology image seg-

mentation, (ii) the robustness of this framework against a

dataset with missing annotations, and (iii) whether one AL

selection criterion, SSL strategy, or their particular combi-

nation is especially recommended for medical image seg-

mentation. Our results show that the combination of SSL

and AL improves the performance of SSL, but not the per-

formance of AL, regardless the strategy. We observe that a

simple Only Positive strategy with AL is sufficient to obtain

good quality results, without requiring SSL.

This paper is organized as follows. In Section 2 we give

an overview of the related works. In Section 3 we present

the dataset and the SSL+AL framework. The experimental

protocol and results are presented and discussed in Section

4, before concluding in Section 5.

2. Related works

2.1. Semantic segmentation with missing annota-
tions in digital pathology

Semantic segmentation is the task of partitioning an im-

age into objects or regions. It is a pixel-level classification

task that assigns the same label to pixels belonging to ob-

jects of the same class. Semantic segmentation is a funda-

mental problem in digital pathology, where objects such as

nuclei or glands have to be precisely identified in an im-

age [5, 15, 32, 63]. In recent years, deep learning models

have consistently outperformed traditional computer vision

approaches [48, 10, 22, 45, 52]. The task is formulated as a

supervised learning one, where images are matched to a seg-
mentation mask, an equally-sized image whose pixels are

the labels of the corresponding pixels in the sample.

In real-world applications, the annotations represented in

the segmentation mask are manually provided by experts.

This is a time-consuming operation, and even experts are

likely to omit annotations, provide inaccurate annotations,

or make mistakes [16]. There is therefore a great inter-

est in methods that can deal with missing and/or imperfect

annotations [9, 17, 53, 59, 61]. Focusing specifically on

medical image segmentation problems, authors have evalu-

ated the impact of data augmentation techniques in differ-

ent models, [12, 75] and data augmentation via generative

models [8, 54]. Transfer learning is a popular approach that

has been applied for colorectal cancer image segmentation

[26, 43], breast cancer [62] and several other medical do-

mains, see e.g. [11, 61] for more in-depth surveys on this

topic. Model-specific techniques have also been proposed,

such as in [39] that uses ensembles of independent models

that do not consider pixels of uncertain status.

In this work, we consider semi-supervised learning and

active learning, two families of machine learning methods

that make use of partially annotated data during the train-

ing phase. We discuss them in greater detail in the rest of

this section, with particular attention to their application to

medical image segmentation.

2.2. Semi-supervised learning for image segmenta-
tion

Semi-supervised learning considers both labeled and un-

labeled samples in the training set. One family of semi-

supervised methods generates pseudo-annotations for the

unlabeled images, in order to obtain a completely anno-

tated set of images to use for subsequent trainings, until

some convergence criterion is met. This pseudo-labeling

procedure, also called self-training by some authors, is an

application of the classic machine learning Expectation-

Maximization (EM) procedure [14, 30, 38, 40, 74]. Sim-

ilar procedures have been applied to cardiac MR segmen-

tation [2] and multi-organ 3D segmentation [77]. Multi-

model settings have also been explored, where predictions

from an ensemble of models are aggregated into a single

pseudo-label [34, 41], or where each model estimates the

confidence on its prediction [67].

Consistency-based methods iteratively augment the set

of labeled samples by including into it samples for which

it is possible to generate pseudo-labels that are consistent,
that is, robust to perturbations [4, 29, 46, 72]. The teacher-

student approach uses two networks, a “student” one that

generates predictions that are evaluated against the ones

generated by the “teacher” network, whose weights are in

turn updated as the moving average of the weights of the

student network [33, 55].

We consider in particular a novel class of consistency-

based methods based on exploiting both weak and strong

sample perturbations, The first of these methods is Fix-

Match [50], which generates pseudo-labels for unlabeled

samples by generating both a candidate label and a target

one. The target label is obtained with a weak perturbation of

the original sample and it is converted into a hot-one value

if its probability exceeds a fixed threshold. The candidate

label is, instead, obtained with a strong perturbation, and

compared against the target. FixMatch keeps only pseudo-

labels having sufficiently high predicted confidence. Origi-

nally proposed for image classification, FixMatch has also

been applied to medical image segmentation [27, 58]. Sim-

ilar works tackle instead semantic segmentation in different

domains [18, 24, 78]. The choice of the threshold is how-

ever crucial, as it controls the trade-off between the quality
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of the results and the speed of convergence. The perfor-

mance of FixMatch can also suffer in the case of scarcely

annotated classes [37].

Several methods have been proposed to improve over

FixMatch. Dash and FlexMatch use a dynamic threshold

[69, 73]. FreeMatch uses class-specific adaptive thresh-

olds [65]. Unimatch introduces feature perturbations on

the weakly-augmented samples and applies strong pertur-

bations in a contrastive fashion, selecting two augmenta-

tions at random from a pool of available ones [70]. Al-

phaMatch generates candidate predictions by aggregating

multiple predictions obtained using an ensemble of strong

and weak perturbations [21]. ComWin uses multiple net-

works to obtain pseudo-labels for the unlabeled samples and

chooses the pseudo-labels for which the generating model

displays the highest confidence [66]. UDA introduces un-

supervised data augmentation and minimizes a divergence

metric between the prediction for a sample and the one ob-

tained when introducing some noise on the sample [68].

2.3. Active learning for image segmentation

Active learning iteratively proposes a subset of unla-

beled samples to a human annotator, to be added to the la-

beled part of the training set. The objective is to minimize

the cost of labeling by prioritizing the selection of highly-

informative data to increase the performance of the model

as much and as soon as possible.

Particularly, in active learning the model is first trained

on a small initial set of labeled data referred to as the initial

label pool. An acquisition function is then used to iden-

tify the samples that require annotation by an external or-

acle. Afterward, the newly labeled samples are added to

the labeled pool, and the model is retrained using the up-

dated training set. This process is repeated until the label-

ing budget is exhausted. Currently, research studying AL

strategies mainly concentrates on low-dimensional annota-

tion tasks such as image classification [20]. Some authors

have used AL for segmentation of natural images [6], [7].

The general approach is to train a neural network model on

the labeled data to infer annotations for the unlabeled sam-

ples. In the medical domain, a common selection criterion

to choose the samples to be labeled is based on uncertainty

and relevance, to include samples that are difficult to seg-

ment and include the most information possible. One pos-

sibility is to use bootstrap to compute the variability on the

predictions [71]. Other authors observe the difference in

prediction when a sample is altered with different augmen-

tations [19]. The discrepancy is instead computed consider-

ing Class Activation Maps, which indicate what parts of the

images are more relevant for the final decision, in [1]. In

[47], the authors rank the samples by a score that combines

the uncertainty of the prediction on the unlabeled samples

and a similarity metric between the labeled and the unla-

beled samples at the feature level. The authors of [31] use

an ensemble of k DL models to compute k probability maps

to estimate the uncertainty of the prediction. The samples

highest ranked by uncertainty are subsequently ranked by

discrepancy with respect to the average of the features com-

puted by the ensemble of DL models, to select the smallest

informative subset to be sent to a human annotator.

2.4. Combining semi-supervised and active learning

Active learning and semi-supervised learning can be

combined in different ways to increase the efficiency of the

labeling task. Authors in different fields introduce SSL in

an AL framework for classification tasks, generating pseudo

labels for the unlabeled samples and selecting for manual la-

beling those that have high inconsistency between the orig-

inal sample and the corresponding augmentations [20, 57].

A similar procedure is applied to object detection, where

the samples in the AL step are selected using criteria of un-

certainty and diversity computed during the SSL step [44].

Other works have combined SSL and AL for image seg-

mentation. In [76] the inferred pseudo-labels are ranked by

uncertainty; the most uncertain ones are sent to a human

annotator, while the least uncertain ones are reannotated by

an ensemble of DL models. The combined dataset is used

for fine-tuning before the subsequent pseudo-label genera-

tion. In [64] pseudo-labels are generated aggregating infor-

mation from three projection heads for segmentation, detec-

tion, and classification, and ranked according to an uncer-

tainty score. The highest-ranked samples, deemed the most

informative ones, are sent to the human annotators for the

AL step; the remaining pseudo-labels are kept for the next

training. The mean teacher approach of [42] uses SSL in the

teacher network to generate pseudo labels used to train the

student network; the samples with the best performance are

labeled and inserted in the labeled pool for the subsequent

iteration, and the weights of the teacher network are updated

as moving average of the weights of the student network.

Gigapixel histopathology images are considered in [28].

The images are divided into patches, and a FixMatch proce-

dure is augmented with AL with the introduction, at each it-

eration, of patches whose segmented regions have the high-

est uncertainty.

3. Materials and methods
3.1. Dataset

We use the GlaS dataset for gland segmentation in col-

orectal cancer tissue [48, 49]. The dataset is composed of

165 images of Hematoxylin and Eosin (H&E) stained slides

of different stages of colorectal adenocarcinoma annotated

by expert pathologists based on the shape of the glands.

85 images are used for training (37 benign, 48 malignant).

Originally, GlaS does not have a validation set, so we use
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20% of the test set (16 images, 8 benign, 8 malignant) for

validation and the remaining 64 (29 benign, 35 malignant)

for testing. Each image is annotated pixel-wise, indicat-

ing whether each pixel belongs to the background (labeled

as 0) or to a gland (label 1). We generate non-overlapping

patches of size 256×256 pixels. Smaller patches are padded

by reflecting the image.

Dataset corruption In order to test the AL and SSL

strategies and their combination, we introduce corrupting

the original dataset by removing annotations. We do not add

imperfections in the annotations since it has been demon-

strated that an imprecise segmentation in histopathology

images does not have an impact as strong as missing objects

of interest [16]. We remove 80% gland labels by assigning

them a value of 0, thus confounding them with the back-

ground. Such a high level of noise ensures that the model’s

performance is heavily impacted and the possible effects of

using SSL and AL techniques are noticeable enough. This

label removal is performed on the whole image before split-

ting it into patches, so that we ensure that a gland is consis-

tently removed across the different patches.

Regarding the initial dataset for SSL and AL strategies,

we divide the corrupted training set into labeled and un-

labeled subsets following the Only Positive approach pro-

posed by Foucart et al. [17], keeping as labeled patches

those that contain at least a part of an annotated gland. For

this reason, some of the patches considered as labeled are

actually partially annotated as they can have multiple (part

of) glands present but not annotated as class 1 (gland) as

a result of the corruption introduced. With the level of

noise we consider, once the images are split, we remain

with around 43% annotated patches, that is, 426 from 983

patches, with 36% of their original annotations.

3.2. Problem statement

We focus on a binary gland segmentation problem for

histopathology images with missing annotations, where for

some of the glands that are present in the original sam-

ples there is no corresponding annotation in the segmen-

tation mask. Formally, the goal is to develop an algo-

rithm that takes as input a set of patches of size 256 ×
256 extracted from a Whole Sliding Image (WSI) and

to compute a semantic segmentation mask by classifying

each pixel as either background or belonging to a gland.

The training data D = Dl ∪ Du contains a labeled set

Dl =
{(

xl,1,y1
)
, . . . ,

(
xl,N ,yN

)}
and an unlabeled set

by Du =
{
xu,1, . . . ,xu,M

}
, with N potentially � M ,

where xl,i and yi are respectively the i-th labeled image

patch and its corresponding mask (each pixel xij has an as-

sociated value in the mask yij of 0 for background and 1
for glands) of size Hp ×Wp = 256 × 256, and xu,j is the

j-th unlabeled patch.

3.3. Combination of semi-supervised and active
learning

We use the SSL+AL framework from [20] originally

proposed for classification, and adapt it for segmentation.

In a nutshell, this method embeds an SSL procedure in each

AL iteration. Thanks to its generality we can use it to im-

plement different SSL and AL strategies for respectively

pseudo-label generation and relabeling, which can be pro-

vided as hyperparameters at runtime. It also allows for easy

customization of weak and strong augmentations in the SSL

step that are consistent with our dataset. The algorithmic

framework is reported in Algorithm 1.

Algorithm 1 Semi-supervised learning-based AL frame-

work, adapted from [20].

Require: Dataset D = Dl ∪ Du, AL strategy, SSL strategy,

target cardinality of unlabeled data Ku, selected sample

batch set B, AL batch size K, segmentation model M0

randomly initialized at start.

B0 ← Dl

U0 ← Du

L0 ← {(x, y) : x ∈ B0}
step t = 0, accuracy A0 = 0
while |Ut| > Ku do

train Mt using SSL strategy

At ← accuracy(Mt)
select Bt+1, |B| = K, from Ut using AL strategy

labeling Lt+1 ← Lt ∪ {(x, y) : x ∈ Bt+1}
unlabeled pool update Ut+1 ← Ut \Bt+1

t = t+ 1
end while

return Mt−1

Semi-supervised learning methods. We consider three

SSL methods, FixMatch and the derived FlexMatch and

FreeMatch, whose general principles have been described

in Section 2.2. These are recent state-of-the-art methods for

classification, whose application to semantic segmentation

in digital pathology has not been explored in depth. To the

best of our knowledge, FlexMatch and FreeMatch in partic-

ular have not yet been applied to image segmentation.

Our FixMatch implementation for segmentation follows

the approach of [58]. At each iteration t, the target model

Mt is learned by minimizing the loss function of the form

Ll + Lu, where, at each batch, Ll and Lu are respectively

supervised and unsupervised losses [25]. In the three cases,

the supervised loss is computed as Ll = Ldice +LCE . The

dice loss Ldice is

Ldice = 1− 1

Nt

Nt∑
n=1

2
∑
ij

pij,nyij,n + 1

∑
ij

pij,n +
∑
ij

yij,n + 1
(1)
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where p = P
(
y | xl

)
= (pij)i=1,Hp,j=1,Wp

is the soft-

max probability matrix predicted by the model. The cross-

entropy loss LCE is

LCE =
1

Nt

Nt∑
n=1

1

Hp ×Wp

∑
i,j

l (pij,n, yij,n) , (2)

where l (ŷ, y) = y log ŷ + (1− y) log (1− ŷ), p =
P

(
y | xl

)
= (pij)ij=1,Hp,1,Wp

is the softmax probability

matrix predicted by the model for a sample x.

The unsupervised loss Lu is the cross-entropy loss com-

puted according to the model’s predicted class distribution

given a weakly augmented version of a given unlabeled im-

age qα = P (y | α (xu)). We use q̂α = argmax (qα) to

denote a pseudo label. The Lu is computed as

Lu =
1

μB

1

Hp ×Wp

μB∑
m=1

∑
ij

1(max(qαij,m)≥τ)l
(
q̂αij,m, qAij,m

)
,

(3)

where μ the ratio between labeled and unlabeled samples

in the batch, qA = P (y | A (xu)), A (.) is the strong

augmentation operation and τ denotes the threshold above

which we take a pseudo-label.

The difference between the three SSL methods is in the

value of τ . In FixMatch τ is a given hyperparameter [50].

At each iteration tSSL, FlexMatch uses a class-specific

threshold τtSSL
(c) that makes the learning more lenient to-

wards classes that are difficult to learn [73]. A coefficient

σtSSL
(c) for a class c at SSL iteration tSSL is computed as

σtSSL
(c) =

∑B
m=1

∑
ij 1(max(qαij,m) > τ) ·
1(q̂αij,m = c), (4)

This coefficient is normalized to [0, 1] and used to rescale

τ . FlexMatch also includes a warm-up threshold when the

number of unlabeled data that is unused is too high. The

global flexible threshold is then expressed as

τtSSL
(c) =

σtSSL
(c)

max
{
max

c
σtSSL

,M −∑
c σtSSL

} · τ. (5)

FreeMatch can be considered a variant of FlexMatch

whose threshold values reflect the stage of the training

process [65]. The thresholds are set at low initial val-

ues to favor a higher acceptance of pseudo-labeled sam-

ples, and the values are progressively increased during the

training to ensure that only high-quality pseudo-labels are

kept. First, a global threshold τtSSL
is defined as the Ex-

ponential Moving Average (EMA) of the confidence at

each training step, namely 1/C at the first iteration, with

C being the number of classes, and as λτtSSL−1 + (1 −
λ) 1

B
1

Hp×Wp

∑B
b=1

∑
ij(q̂

α
ij,b) for the subsequent iterations,

Figure 1: An example of, left to right, a basic, a weak, and

a strong augmentation of a random patch.

where λ ∈ (0, 1) is the momentum decay of EMA, and

B the batch size, q̂αb the argmax pseudo-labels gener-

ated with a weak augmentation for the b-th sample in the

batch.The class-specific thresholds are computed in a sim-

ilar way. The expectation of the model prediction p̃tSSL
(c)

for each class c is computed as 1/C at the first iteration and

λp̃tSSL−1(c) + (1 − λ) 1
B

1
Hp×Wp

∑B
b=1

∑
ij q

α
ij,b(c) for the

subsequent ones. This value is then normalized and rescaled

by the global threshold as

τtSSL
(c) =

p̃tSSL
(c)

max
c

p̃tSSL

· τtSSL
. (6)

FreeMatch also introduces an additional term in the loss

function called Self-Adaptive Fairness to take into account

a possible class imbalance, which we implement as in [65]

and do not describe in further detail for the sake of brevity.

As a baseline, we consider the case of not including a

SSL strategy in a the AL iteration. In this case, the AL

selection criterion operates on the pseudo-labels predicted

by the model trained on the samples available with the Only

Positive strategy.

Augmentations. The three SSL methods we use in our

experiments are based on weak and strong augmentations.

First, a base augmentation, composed of random horizontal

and vertical flips, as well as random rotation by 90 and 180
degrees is applied to the image as well as the segmentation

mask. The weak augmentation applies a color perturbation

in the HED color space [36] and a random Gaussian blur to

the base augmentation. The strong augmentation leverages

the work from RandAugment1 [13] to produce a random

augmentation of 3 layers. We only consider the annotation

that preserve geometry of the image, in order to have the

same segmentation mask for the basic, weak, and strong

augmentations. An example is given in Figure 1.

Active learning methods. The SSL methods leverage

the unlabeled data by ensuring a consistent prediction be-

tween a weakly-transformed sample and the corresponding

1https://github.com/DIAGNijmegen/
pathology-he-auto-augment
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strongly-transformed one. Hence, the AL selection meth-

ods make use of the predicted pseudo-labels to select the

samples to be shown to the annotator.

The first AL selection strategy, the Consistency-based

method, is to choose samples that demonstrate highly in-

consistent prediction with different distorted versions. Dif-

ferent from [20], we propose a metric to measure the in-

consistency of predictions over a random set of distortion

versions of a given image x. Here, consistency is defined

as the variance of the probability across different augmenta-

tions of the input, where all augmentations should have the

same output.

E (x,M) =
1

H ×W

H,W∑
i,j=1

C∑
c=1

Var
[
Pα
ijc, P

A1
ijc , ..., P

ANA
ijc

]

(7)

where

Pα
ijc = P

(
qαij = c | α (xij) ,M

)
(8)

PA
ijc = P

(
qαij = c | A (xij) ,M

)
(9)

and C = 2 is the number of classes, xij is the pixel value at

the position i, j of the image x and qij is its corresponding

predicted label. NA is the number of augmentation on the

original input image x.

For batch selection, we aim to choose a batch B such

that the following consistency metric is maximized

C (B,M) =
∑
x∈B

E (x,M) (10)

The Least Confidence method computes the average

probability for the predicted class of each pixel and selects

the K patches with the lowest confidence score. Given

q = P (yij = q|xu) a probability distribution for the

pseudo-labels of all pixels of a patch xu, the metric is de-

fined as

Sconf(x) =
1

Hp ·Wp

∑
ij

max
c

qαijc (11)

The K patches with the lowest Sconf are selected for the

labeling step.

The Entropy-based method computes the entropy of the

class distribution for each pixel and selects the K patches

with the lowest entropy. It is defined as

Sentr(x) =
1

Hp ·Wp

∑
ij

∑
c

qαijc · log qαijc. (12)

The K patches with the lowest Sentr are selected for the la-

beling step.

The baseline AL method is the random selection without

replacement of a set of K patches to be annotated at each

iteration.

4. Experiments

4.1. Training setup

The model that we use as the base segmentation model

during all our experiments is the U-Net, proposed by Ron-

neberger et al. [45], a popular model for segmentation.

The training is performed using Stochastic Gradient De-
scent (SGD) with a learning rate of 10−1 and a momentum

coefficient of 0.9. The learning rate is decreased to 10−2 at

epoch 80, and then to 10−3 at epoch 120. Each iteration has

a maximum of 200 epochs. To avoid overfitting we stop the

training using an early stopping strategy2. The early stop-

ping counter starts at epoch 120 and has a patience parame-

ter of 30 epochs with a delta of 0.001. The early stopping is

combined with callback based on the validation loss, which

allows the retrieval of the last weights that generalize well

on the validation set.

For the SSL approaches, in every batch we use one set

of 4 supervised samples, one set of 4 weakly augmented

samples, and one set of 4 strongly augmented samples. For

fully supervised learning, we use a batch of 12.

The initial training set (before any active learning query)

contains all the non-empty corrupted patches as described

in Section 3.1. A first model is trained on this dataset us-

ing the settings described above. Then, the active learn-
ing loop goes as follows: using a query strategy, query

K = 0.05 · |D| = 49 unlabeled samples to be labeled, add

them to the labeled dataset, and train a new model (using

the settings described above) on the updated dataset for the

next iteration of the loop. As we want to evaluate the impact

of the noise, we stop when all the samples have been added

to Dl, for a total of 13 iterations. We simulate the annota-

tion by an expert by using the original ground truth mask.

Therefore, the patches that we introduce after the labeling

phase are fully annotated. The patches in Dl after the cor-

ruption remain unchanged throughout the whole process.

The different setups we want to try for our experiments

are: to train the segmentation model in a fully supervised

way using the corrupted dataset, train the model using only

the different SSL methods, train the model using only the

different AL strategies, and then finally train the segmenta-

tion model with the combination of the AL loop enhanced

with an SSL training.

We evaluate the 16 combinations of AL and SSL meth-

ods (including the baselines). We compare the results also

with fully supervised trainings on the original and corrupted

datasets. The code and the material to reproduce our exper-

iments are available online.3

2Implementation based on the code available in https://github.
com/Bjarten/early-stopping-pytorch

3https://github.com/luciledierckx/
Histopathology_Seg_SSL_AL.
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4.2. Results and discussion

In our experiments, we evaluate the effect of AL, SSL

and their combination on the corrupted dataset. In partic-

ular, we want to observe whether targeted strategies out-

perform the respective baselines (random selection, no SSL

strategy, supervised learning). Starting from a high noise

level, we observe also how much data needs to be annotated

before the model performance becomes sufficiently good.

The metrics we consider for evaluation are the Dice
Score (DSC)

DSC =
1

N

N∑
n=1

2
∑
ij

pij,nyij,n + 1

∑
ij

pij,n +
∑
ij

yij,n + 1
(13)

and the Matthews Correlation Coefficient (MCC)

MCC =
TN × TP + FN × FP

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
.

(14)

The results in terms of Dice Score on the test set are re-

ported in Figure 2, divided by AL method. We include the

results obtained using supervised learning on the original

and corrupted dataset as a reference for the quality of the

results. The MCC scores correlate perfectly with the DSC

ones, so we do not report them here for the sake of brevity.

The plots with the MCC scores and the results on the test

set aggregated by SSL method are reported in the Supple-

mentary Material.

In each plot of Figure 2 we therefore compare the per-

formance of the different SSL methods. The results of the

SSL methods alone on the corrupted dataset correspond to

the first point in the respective curves in the plot.

Overall, the AL methods obtain results very close to each

other, and even the random selection performs as well as its

alternatives. A likely explanation for this phenomenon is

the “cold start” problem of AL, when an initial dataset that

is too small or too unbalanced causes the sampling strategy

to be highly biased, and thus to select suboptimal samples

for annotation [20, 23]. While no selection strategy drasti-

cally underperforms, there is no definitive best one either.

The supervised approach with 80% of noise perform simi-

larly to the only non-trainable method in [48], and all other

studies approaches perform significantly better.

Concerning the SSL strategies, from our results in Figure

2 it appears evident that using an SSL strategy improves the

performance over the fully supervised training, even though

the results of FixMatch and FreeMatch are very close to

those obtained when using the simple Only Positive strat-

egy. We note how our results for FixMatch at its first iter-

ation are consistent with those reported by [28] on another

dataset. These results could be due to the fact that models

developed in a domain often do not translate well into other

domains, as discussed in [9]. In particular, while these SSL

methods are state-of-the-art in classification, more efforts

are needed to improve their performance on segmentation

tasks, in particular in the case of histopathology images.

Surprisingly, FlexMatch obtains much poorer results

than its alternatives even when very high portions of the

dataset have been annotated. This fact suggests that

its threshold updating rule is neither robust enough (as

the fixed FixMatch value) nor flexible enough (as the

FreeMatch one) to perform well on this task and kind

of data. In particular, the method suffers the most from

the small portion of initial annotations and fails to re-

cover. In the Supplementary Material we include the met-

rics recorded for training and validation, from which we ob-

serve how FlexMatch fails to converge, resulting in a vari-

ability of the results on the test set. A longer runtime did

not prove beneficial either. The threshold update rule of

FreeMatch, which adapts the threshold values with respect

to the previous iteration, rather than starting from the initial

value, is clearly superior in terms of robustness, at least in

the context considered in this work.

Finally, and consequently, no combination of SSL+AL

methods stands out from the rest of the pool. No AL se-

lection method benefits from the pseudo-labels generated

by an SSL method. On the contrary, SSL methods bene-

fit from the additional labeled samples provided by the AL

selection, getting similar results with all the AL strategies.

The relatively good performance obtained by the Only

Positive strategy with respect to its more complex alterna-

tives confirms the observations of [16], where this strategy

outperformed more sophisticated techniques for pseudo-

label generation as SSL. Nevertheless, adding AL to the

Only Positive strategy improves the model’s performance

after the second or the third iteration. Considering the

computational cost of the SSL procedures (in particular for

FreeMatch), the Only Positive strategy, possibly combined

with Active Learning, appears to be a method of choice for

partially annotated histopathology datasets.

The small difference in performance between the

SSL+AL methods and the fully supervised learning on the

complete dataset can be explained by the absence of a sig-

nificant amount of annotations in the initial labeled pool, as

explained in section 3.1.

5. Conclusion
Image segmentation is one of the fundamental tasks in

digital pathology. Modern deep learning approaches require

a large amount of annotated data, which are difficult to ob-

tain in many real-life situations due to the time-consuming

effort demanded to experts to provide them. In this work,

we have provided a computational evaluation of two tech-

niques aimed at alleviating this issue by making use of

non-annotated samples, active and semi-supervised learn-

ing, and their combination. In particular, as SSL methods
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Figure 2: Dice Score on the test set for the four AL selection methods. In each plot, we include the performance obtained by

combining each AL method with our pool of SSL methods. We include the results obtained by a fully supervised training on

the noisy dataset as a lower bound and by a fully supervised training on the complete set of annotations as an upper bound.

we use the FixMatch for segmentation and we adapt Flex-

Match and FreeMatch for this task, and four different AL

strategies, namely consistency-based, entropy-based, ran-

dom, and least confidence. We studied the impact of these

methods on the GlaS dataset, from which we removed anno-

tations in a controlled manner to simulate the errors made

during the annotation process. Our results indicate that a

simple Only Positive strategy performs as well as a recent

family of consistency-based SSL methods, and can there-

fore be considered as a valid, cheaper alternative. Using

AL with the Only Positive strategy improves the model’s

performance after a few iterations over using just the Only

Positive strategy. However, an AL random strategy obtains

the same results as more elaborated selection methodolo-

gies, such as entropy-based or consistency-based strategies.

In addition to the SSL and AL strategies we considered,

more different strategies could be tested, as well as other

types of combinations, such as the embedding of an AL

selection strategy in an SSL procedure. We can also per-

form our evaluations on different segmentation tasks, such

as multiclass nuclei segmentation.
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