
IEEE Software Special Issue: Bots in Software Engineering
Editors: E. Shihab, S. Wagner, M. Gerosa, M. Wessel, J. Cabot, sw5-22@computer.org

Recognizing bot activity in
collaborative software
development

Mehdi Golzadeh, Tom Mens and Alexandre Decan
Software Engineering Lab, University of Mons, Belgium

Eleni Constantinou
Eindhoven University of Technology, Netherlands

Natarajan Chidambaram
Software Engineering Lab, University of Mons, Belgium

Abstract—Machine accounts (bots) are an integral part of collaborative software development.
They automate many repetitive tasks on behalf of their human owners. Focusing on popular
open-source projects on GitHub, we provide evidence that bots are regularly among the most
active contributors, even though GitHub does not explicitly acknowledge the presence of several
of these bots. This poses a problem for techniques that analyze human contributor activity. For
example, tools for recognizing and giving credit to project members for their contributions may
wrongly credit bots for their automated contributions. This calls for more accurate bot
identification techniques.

Index Terms: machine account, bot
identification, contributor activity, developer
contribution

Motivation and context
Distributed software development is, by defi-

nition, a collaborative effort involving many dif-
ferent persons, teams, organizations and com-
panies. This highly collaborative software de-
velopment process has led to the creation and

widespread use of distributed versioning systems
such as git, social coding platforms such as
GitHub and GitLab, issue tracking tools such as
Bugzilla, code reviewing tools such as Gerrit, and
a plethora of continuous integration and deploy-
ment (CI/CD) services.

As witnessed by initiatives such as
the CHAOSS Linux Foundation Project
(https://chaoss.community) and associated
software development analytics tools such as Gri-
moireLab (https://chaoss.github.io/grimoirelab/),
it is important to assess the health of software
communities by considering the activity of

Published by the IEEE Computer Society © IEEE 1



each contributor. Such information is also
highly relevant to credit and recognise project
contributors based on their activity [1], and to
allow employers to identify appropriate new
team members [2].

An important challenge in doing so is the
presence of development robots (hereafter abbre-
viated to bots) that automate repetitive tasks to
help software project contributors in their day-to-
day activities. Not properly taking into account
these bots may lead to incorrect or misleading
conclusions, especially if such bots belong to
the top contributors in software projects. This is
likely to be the case, since bots are increasingly
used to automate a wide range of activities, such
as welcoming newcomers, reporting test cover-
age, updating dependencies, detecting vulnera-
bilities, supporting code review, submitting pull
requests, verifying licensing issues, and so on [3].

In this article, we provide evidence that bots
are regularly among the most active contributors
in popular GitHub projects, even though GitHub
does not explicitly indicate these contributors as
being bots. This can be problematic for tools that
aim to credit human project contributors for their
activity.

Acknowledging contributions in
collaborative development

Being able to accurately assess the contri-
butions of project participants is valuable for
many purposes. Software engineering researchers
involved in empirical analyses of socio-technical
activity and productivity in software projects need
such data in order to understand and improve
the development processes [4]. Prospective em-
ployers may want to analyze developer activity
profiles in order to identify skilled developers
that match their job openings as closely as pos-
sible [2]. Individual contributors may desire to
get proper credit and visibility for their –often
significant– contributions in the software projects
they are involved in. They may want to use this
recognition for career promotion or even to get
some kind of financial support for the –often
voluntary– work they spend on a project [1].

The way in which recognition is credited
can differ a lot depending on the considered
community. For example, OpenStack recognizes
unsung heroes by discerning community contrib-

utor awards. GitHub has a similar GitHub Stars
program. Initiatives such as GitHub Sponsors
allow companies to sponsor open-source projects
in order to help the project contributors get the
recognition they deserve. Tools such as Source-
Cred1 aim to support communities in measuring
and rewarding value creation.

It is challenging to correctly determine the
contributions of each project member [5]. A first
challenge concerns which types of contributions
should be considered [6], [7]. Typically, auto-
mated tools for identifying contributions (such as
octohattrack2 or auto add contributors3) provide
only an impartial picture, as they tend to focus
only on the types of activity that are discernible
from the social coding platform (e.g., commits,
pull requests, or code reviews). Other types of
important contributions (e.g., finance, infrastruc-
ture, community management) are therefore often
ignored [8].
A second challenge concerns how to identify
contributors. If the same contributor uses multiple
distinct accounts, or if the same account is shared
by multiple contributors, identity merging and
matching techniques are needed [9].
Another challenge concerns how to measure ac-
tivity. The real effort of contributors can only be
approximated. For example, the number and size
of code commits could be used as a proxy of
the coding effort, but does not reflect the time
required to produce such a commit, since this may
depend on many external factors. Moreover, such
a proxy is unable to distinguish between manual
or automated activity.

Last but not least, contributors may, and
regularly do, use (some of) their social coding
accounts to allow automated tools (i.e., bots)
to carry out repetitive activity on their behalf.
Whether this is intentional or not, such usage of
bots that carry out tasks on behalf of their owner
can disrupt the aforementioned accreditation and
recognition need. Indeed, it would be unfair to
give the same recognition to a contributor whose
contributions are primarily due to a bot that is
committing on his/her behalf, as compared to a
contributor that has invested a similar effort man-
ually. On the other hand, there is nothing wrong

1https://sourcecred.io
2https://github.com/LABHR/octohatrack
3https://github.com/marketplace/actions/auto-add-contributors

2 © IEEE Published by the IEEE Computer Society

https://github.com/LABHR/octohatrack
https://github.com/marketplace/actions/auto-add-contributors


with contributors that try to increase their pro-
ductivity by automating some of their repetitive
tasks, as long as this is not intentionally done to
artificially inflate one’s activity. Whether and how
to give proper recognition to project contributors
remains an open and difficult question.

Distinguishing bots from humans
A first and important step to give proper

recognition to project contributors consists of
distinguishing human activity from bot activity.
GitHub allows project contributors to discern
whether certain types of activity are automated,
specifically for GitHub Apps and GitHub Actions.
According to the GitHub terms of service, bots
are not permitted to register new GitHub ac-
counts. However, things get more complex, since
humans are permitted to set up machine accounts
to perform automated tasks (such as a continuous
integration bot), provided that a human owning
the account accepts the responsibility for its ac-
tions. The problem is that the GitHub API does
not allow to distinguish all such machine accounts
from ordinary user accounts corresponding to real
human activity. As a consequence, tools that want
to benefit from distinguishing human users from
machine users (i.e., bots) have a hard time doing
so. For example, among the available tools to ac-
credit and acknowledge contributors, SourceCred
and contributors-list4 are limited in separating
human and bot contributors by relying on the
GitHub API and on a user-defined list of machine
accounts to do so.

This is where bot identification tools could
come to the rescue. Such tools aim to distinguish
bots from humans in GitHub accounts on the
basis of their behaviour. The way of doing so can
be quite diverse: it can be based on differences in
the commenting patterns made by bots [10], on
naming conventions, or on commit activity pat-
terns [11]. Examples of such tools are BoDeGHa5

that relies on comments made in pull requests and
issues, and BoDeGiC6 that relies on git commit
messages.

Using bot identification tools makes it easier
to dissociate bot accounts from human accounts,
but can still lead to incorrect detections, notably

4https://giters.com/wow-actions/contributors-list
5https://github.com/mehdigolzadeh/BoDeGHa
6https://github.com/mehdigolzadeh/BoDeGiC

when accounts are invoved in a mix of manual
human activity and automated machine-generated
activity [12]. Although there is still room for
improving bot identification tools [13], they can
already be very helpful in identifying bots, espe-
cially in large repositories.

Some evidence of bot contributions
In order to justify the need for properly

identifying bot activity in collaborative software
development projects, we provide some evidence
of the presence of bots among the top contribu-
tors in popular open-source projects on GitHub.
We selected 10 large and active open-source
projects for popular programming languages (e.g.,
JavaScript, Java, Python, Rust). The list notably
includes: VueJS7, a very popular front-end frame-
work for JavaScript with more than 40K depen-
dent projects on NPM; Servo8, an experimental
browser engine written in Rust that has more
than 1K contributors and nearly 40K commits;
and Cucumber-JVM, a Java implementation of the
popular test framework that has more than 53K
dependent projects on GitHub.

We relied on the GitHub API to retrieve the
contributors with the highest number of commits
in these 10 projects, as well as their account type
(i.e., user or bot) as reported by the GitHub API
on 9 November 2021. In contrast to prior work,
which has focused on the ability of machine
learning classifiers to correctly identify bots, this
work focuses on the possible impact of bots, that
are not reported as such by the GitHub API, on
the attribution to contributors.

Fig. 1 depicts the top 20 contributors to
these 10 popular software projects, ranked in
decreasing order of activity. Contributors that are
responsible for at least 1% of all commits are
highlighted. We classified the contributors into
three categories: human users, labeled bots as
reported by the GitHub API, and unidentified bots
that were not reported as bots by GitHub. This
classification was confirmed through a manual
inspection of their activities by two authors of
this paper.

The figure shows that the considered projects
have between one and three bots among the top

7https://github.com/vuejs/vue
8https://github.com/servo/servo

Published by the IEEE Computer Society © IEEE 3

https://giters.com/wow-actions/contributors-list
https://github.com/mehdigolzadeh/BoDeGHa
https://github.com/mehdigolzadeh/BoDeGiC
https://github.com/vuejs/vue
https://github.com/servo/servo


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
contributor rank

pr
oj

ec
ts

x x
x x

x x x

x

x
x

x
x

human user
labeled bot
unidentified bot

Figure 1. Bots observed in the top 20 most active
committers in 10 popular open-source projects.

20 contributors. However, only less than half of
the bots (9 out of 21) are reported as such by the
GitHub API. The results are even more striking if
we focus on the subset of contributors responsible
for at least 1% of all commits: the overwhelming
majority of the bots (18 out of 21) belong to those
contributors and most of them (10 out of 18) are
not labeled as bots by GitHub. On average, the
bots are responsible for nearly one fifth of all
commits in these projects.

Interestingly, we also found that some projects
had explicitly credited and acknowledged bots in
the list of “people that contributed to the project”.
While explicitly crediting and acknowledging
contributors may encourage them to continue to
contribute, the presence of bots in the contributor
list may be perceived as a lack of consideration
or respect towards human contributors.

What’s next?
The results of our analysis revealed that bots

play an undeniable role in large collaborative
software development projects. These bots seem
to carry out a significant amount of work, as
many of them belong to the most active project
contributors. Nevertheless, many bot accounts are
not labeled as such by GitHub. Understanding
why they are not labeled as bots remains an open
question.

Having unidentified bots among the most ac-
tive contributors may be problematic. For ex-
ample, the presence of such bots in a contrib-
utor list may cause difficulties when changes
in the project’s Contributor License Agreement
(CLA) are required, since such changes require
the explicit approval of all human contributors. It
also becomes more difficult to give due credit to

human contributors for their activities, and could
even lead to bots (or rather the human owners
of the associated machine accounts) receiving
financial compensation for their effort.

While more advanced bot detection tech-
niques exist [10], [11], and even if they are
more reliable than the GitHub API to identify
bots, they are still not sufficient to accurately
capture all bots [13]. Moreover, existing bot
identification techniques mostly take into account
specific coding-related activity types (e.g., com-
mits, pull requests, issues, etc.). In order to cope
with the diversity of contributions in collaborative
development projects [5]–[7], there is a need for
techniques that take into account a considerably
wider range of activities (e.g., discussions, bug
handling, infrastructure and community manage-
ment, even financial contributions).

As a consequence, maintainers currently have
no choice but to manually maintain a list of active
bots in their repository, by manually inspecting
contributors’ activities on a regular basis. While
this option is feasible for smaller repositories, it
is impractical to do such a manual inspection in
repositories with a large number of contributors
and activities. This highlights the need to rely
on automatic bot identification and in turn calls
for more research on accurate bot identification
techniques.

Moreover, since we expect bots to become
more complex and more sophisticated in the
range of development activities they support and
automate, there is also a need for exploiting
machine learning and artificial intelligence tech-
niques to properly detect and acknowledge the
presence of bots and their specific activity pat-
terns.

Acknowledgements.
This research is supported by DigitalWal-

lonia4.AI research project ARIAC (grant num-
ber 2010235), as well as by the Fonds de la
Recherche Scientifique – FNRS under grants
number O.0157.18F- RG43 (Excellence of Sci-
ence project SECO-ASSIST) and T.0017.18.

REFERENCES
1. Il-Horn Hann, Jeff Roberts, Sandra Slaughter, and Roy

Fielding. Economic incentives for participating in open

4 © IEEE Published by the IEEE Computer Society



source software projects. International Conference on

Information Systems, (33), 2002.

2. Claudia Hauff and Georgios Gousios. Matching GitHub

developer profiles to job advertisements. In Working

Conference on Mining Software Repositories, pages

362–366. IEEE/ACM, 2015.

3. Mairieli Wessel, Bruno Mendes de Souza, Igor Stein-

macher, Igor S. Wiese, Ivanilton Polato, Ana Paula

Chaves, and Marco A. Gerosa. The power of bots:

Characterizing and understanding bots in OSS projects.

Human-Computer Interaction, 2, 2018.

4. Zhifang Liao, Xiaofei Qi, Yan Zhang, Xiaoping Fan,

and Yun Zhou. How to evaluate the productivity of

software ecosystem: A case study in GitHub. Scientific

Programming, 2020.

5. Eirini Kalliamvakou, Georgios Gousios, Diomidis

Spinellis, and Pouloudi Nancy. Measuring developer

contribution from software repository data. In

Mediterranean Conference on Information Systems,

2009.

6. J. Cheng and J. L. C. Guo. Activity-based analysis

of open source software contributors: Roles and dy-

namics. In International Workshop on Cooperative and

Human Aspects of Software Engineering, pages 11–18.

IEEE/ACM, 2019.

7. Javier Luis Cánovas Izquierdo and Jordi Cabot. On the

analysis of non-coding roles in open source develop-

ment. Empirical Software Engineering, 27(1), 2021.

8. Jean-Gabriel Young, Amanda Casari, Katie McLaugh-

lin, Milo Z. Trujillo, Laurent Hébert-Dufresne, and James

P. Bagrow. Which contributions count? Analysis of

attribution in open source. In International Confer-

ence on Mining Software Repositories, pages 242–253.

IEEE/ACM, 2021.

9. Mathieu Goeminne and Tom Mens. A comparison of

identity merge algorithms for software repositories. Sci-

ence of Computer Programming, 78(8):971–986, 2013.

10. Mehdi Golzadeh, Alexandre Decan, Damien Legay, and

Tom Mens. A ground-truth dataset and classification

model for detecting bots in GitHub issue and PR com-

ments. Journal of Systems and Software, 175, 2021.

11. Tapajit Dey, Sara Mousavi, Eduardo Ponce, Tanner Fry,

Bogdan Vasilescu, Anna Filippova, and Audris Mockus.

Detecting and characterizing bots that commit code. In

International Conference on Mining Software Reposito-

ries, pages 209–219. ACM, 2020.

12. Nathan Cassee, C. Kitsanelis, Eleni Constantinou, and

Alexander Serebrenik. Human, bot or both? A study

on the capabilities of classification models on mixed
accounts. In International Conference on Software

Maintenance. IEEE, 2021.

13. Mehdi Golzadeh, Alexandre Decan, and Natarajan Chi-

dambaram. On the accuracy of bot identification tools.

In International Workshop on Bots in Software Engi-

neering, 2022.

Published by the IEEE Computer Society © IEEE 5



Author biographies

Mehdi Golzadeh obtained
his master’s degree in Information Technology
Engineering in 2015 from the University of
Tehran, Iran. He has seven years of industry
experience as a developer and group leader. Since
2019, he is a PhD student at the Software Engi-
neering Lab of the University of Mons (Belgium),
in the context of the Belgian FNRS-FWO Excel-
lence of Science research project SECO-Assist.
He carries out empirical software engineering
research, with a focus on the social aspects of on-
line coding and identifying automated behaviors.
Contact him at mehdi.golzadeh@umons.ac.be
Address: University of Mons, Avenue Maistriau
15, 7000 Mons, Belgium

Tom Mens is full professor
and head of the Software Engineering Lab at the
University of Mons, Belgium. His main research
interests are empirical analysis of, and tooling for,
open-source software ecosystems. He published
numerous scientific articles on this topics in peer-
reviewed international journals, conferences and
workshops. He co-edited two Springer books
on software evolution. He was program chair
of ICSM 2013, CSMR 2012 and CSMR 2011,
keynote speaker for ICSME 2016 and invited
lecturer at several international summer schools.
He is project coordinator of the Belgian inter-
university Excellence of Science research project
SECO-Assist. He is IEEE Senior Member. Con-
tact him at tom.mens@umons.ac.be
Address: University of Mons, Avenue Maistriau
15, 7000 Mons, Belgium

Alexandre Decan obtained

a PhD in Sciences in 2013 at the Faculty of
Sciences of the University of Mons (Belgium) on
the subject of data quality in relational databases.
He is post-doctoral researcher at the Software
Engineering Lab of the University of Mons,
where he has authored many well-cited publica-
tions related to the maintenance and evolution
of software ecosystems. He has been actively
involved in several research projects such as the
UMONS Action de Recherche Concertée ECOS,
the Walloon ERDF project portfolio IDEES, the
FNRS-FRQ collaborative research project Seco-
Health and the Belgian FNRS-FWO Excellence
of Science project SECO-Assist. Contact him at
alexandre.decan@umons.ac.be
Address: University of Mons, Avenue Maistriau
15, 7000 Mons, Belgium

Eleni Constantinou is an
assistant professor at the Eindhoven University of
Technology, Netherlands. Her main research in-
terests include mining software repositories, soft-
ware ecosystems and software evolution. She has
published her results in numerous peer-reviewed
journals, conferences and workshops. She has
served in the program and organizing committee
of several premier conferences and workshops.
Contact her at e.constantinou@tue.nl
Address: Eindhoven University of Technology,
De Groene Loper 5, 5612AZ Eindhoven, Nether-
lands

Natarajan Chidambaram
obtained his master’s degree in Data Science in
Engineering in 2020 from the Eindhoven Uni-

6 © IEEE Published by the IEEE Computer Society

mehdi.golzadeh@umons.ac.be
tom.mens@umons.ac.be
alexandre.decan@umons.ac.be
e.constantinou@tue.nl


versity of Technology, Netherlands. He has two
years of industry experience as an AUTOSAR
driver code developer. Since 2021, he is a PhD
student at the Software Engineering Lab of the
University of Mons (Belgium), in the context of
research project ARIAC by DigitalWallonia4.AI.

His research focuses on socio-technical analysis
in collaborative open-source software develop-
ment. Contact him at natarajan.chidambaram@
umons.ac.be
Address: University of Mons, Avenue Maistriau
15, 7000 Mons, Belgium

Published by the IEEE Computer Society © IEEE 7

natarajan.chidambaram@umons.ac.be
natarajan.chidambaram@umons.ac.be

	REFERENCES

