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Abstract—Computer vision tasks such as object detection and
segmentation rely on the availability of extensive, accurately
annotated datasets. In this work, We present CIA, a modular
pipeline, for (1) generating synthetic images for dataset aug-
mentation using Stable Diffusion, (2) filtering out low quality
samples using defined quality metrics, (3) forcing the existence
of specific patterns in generated images using accurate prompting
and ControlNet. In order to show how CIA can be used
to search for an optimal augmentation pipeline of training
data, we study human object detection in a data constrained
scenario, using YOLOv8n on COCO and Flickr30k datasets.
We have recorded significant improvement using CIA-generated
images, approaching the performances obtained when doubling
the amount of real images in the dataset. Our findings suggest
that our modular framework can significantly enhance object
detection systems, and make it possible for future research to be
done on data-constrained scenarios. The framework is available
at: github.com/multitel-ai/CIA.

Index Terms—Computer Vision, Generative AI, Stable Diffu-
sion, Object Detection

I. INTRODUCTION

The performance of deep learning models is dependent on
the quality and diversity of the dataset they were trained on.

Unfortunately, the creation of such high-quality and accu-
rately annotated datasets is often challenged by the scarcity of
data and the substantial costs associated with annotation [1],
especially in specialized and evolving Computer Vision tasks.
Hence, other strategies are commonly used to enhance dataset
quality, like Active Learning [2] and Data Augmentation
methods [3] (image rotation, flipping, color adjustment, etc).

However, these methods modify images with simple and
often content-agnostic transformations, limiting their ability
to introduce completely new information into the dataset.
This limitation led us to the exploration of Generative AI

Fig. 1: CIA-generated images from an image taken from
the COCO dataset for different ControlNets. Either efficient
(Openpose, Canny Edge) or inefficient (Mediapipe) for an
object-detection task. Prediction of YOLOv8n trained on the
dataset corresponding to the image is shown in red, and ground
truth in green.

models like Stable Diffusion [4] that can generate entirely new
images. Through the usage of ControlNet [5] with predefined
features extracted from the original image, we can tailor the
generation process to meet specific task requirements. This
creates an unprecedented opportunity to augment datasets
beyond traditional methods. Concurrently, when dealing with



synthetic data augmentation, we want to generate the most
useful images for model training. This raises the question of
how to assess the quality and relevance of the generated data.
Finally, a pivotal question arises:

Can the quality of region of interest vision datasets be
enhanced to ensure better model performance through the
incorporation of images generated with Controlled Stable
Diffusion ?

To answer that question, this work introduces CIA, a
modular framework for data augmentation. It integrates Stable
Diffusion with Control Net models and is able to :
(1) Generate synthetic images for dataset augmentation using

both generative and classic data augmentation methods.
(2) Filter out low quality samples with defined metrics.
(3) Control the generative process to create specific patterns

in the generated images for region dependent computer
vision tasks (object detection, segmentation, etc.)

(4) Easily preform parallel training, testing, and comparison
of multiple augmentation methods

We prove the efficacy of CIA, through a case study on
human object detection, in a scenario where the low amount
of data severely limits the performances of the trained model.
Examples of images generated with the proposed framework
can be seen in Fig.1.

II. RELATED WORKS

Data augmentation has become an indispensable strategy
for enhancing the quality and diversity of visual datasets
and improving models’ performances in Computer Vision
tasks. Shorten and Khoshgoftaar’s comprehensive review [6]
extensively explores the diverse range of techniques employed,
spanning from fundamental geometric transformations [3] to
sophisticated generative methods such as Stable Diffusion [4]
and ControlNet [5].

These advanced techniques can generate novel content and
scene conditions. For example, introducing new variations
in weather, people position, object appearance, image style,
etc. This essential for mitigating the limitations posed by
inadequate datasets, ultimately enhancing the performance and
reliability of models.

Chen et al. [7] preform scale-aware data augmentation
strategies for region dependent tasks. They focus on adding
objects of different scales through computationally efficient,
zoom-in/out operations. Ghiasi et al. [8] expanded on this
approach by copy-pasting the zoomed objects at various scales
into different backgrounds.

A. Stable Diffusion for Data Augmentation

Eliassen and Ma [9] demonstrated how Stable Diffusion,
combined with Active Learning, can effectively re-balance
classification datasets, notably outperforming traditional over-
sampling methods on CIFAR-10. Trabucco et al. [10] demon-
strated the efficacy of text-to-image diffusion models in creat-
ing synthetic images for data augmentation. Similarly, Azizi et
al. [11] highlighted how synthetic data from diffusion models

can enhance ImageNet [12] classification. By fine-tuning text-
to-image models, they achieved class-conditional models with
impressive fidelity.

For region dependent tasks such as object detection and in-
stance segmentation, Ge et al. [13] introduced a text-to-image
synthesis paradigm leveraging DALL-E [14]. Their method
generates diverse labeled data by utilizing segmentation masks
to separately produce foregrounds (objects) and backgrounds
(scenes). However, the approach exhibits limitations in the
quality of the generated samples due to the artificial merging
of generated objects onto backgrounds, resulting in a notice-
able discontinuity between the foreground and background
elements.

Wu et al. [15] focused on image augmentation with Con-
trolled Diffusion. Their method significantly boosts perfor-
mance with minimal training data.

Although these studies collectively showcase the transfor-
mative impact of Stable Diffusion models, none of them offer
a complete and reliable pipeline for generative data augmen-
tation. They do not provide an easy to set up tool for quickly
and efficiently testing the different augmentation strategies, or
for employing quality metrics to evaluate synthetic data.

B. Synthetic Images Quality Assessment

Assessing the quality of the synthesized samples presents a
notable challenge. The complexity stems from the subjective
and multidimensional nature of ”quality”, as its definition can
defer depending on the intended application of the generated
data. The literature often highlights the use of Image Quality
Assessment (IQA) metrics for evaluating visual quality. Active
Learning metrics can be used for assessing the potential impact
of the data on model training.

1) IQA Metrics: IQA metrics focus on different fea-
tures and patterns in the image to quantify its qual-
ity. Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE) [16], measures contrast, luminosity, distortion,
etc, to quantify anomalies in generated images. The Neural Im-
age Assessment (NIMA) model [17] employs a CNN trained
to measure the aesthetics and realism of synthetic images,
and outputs a distribution of scores that represent different
criteria. As introduced in [18], ClipIQA leverages the power
of large-scale pre-trained vision-language models to predict
image quality without reference images. It was trained on
specific features related not only to quality but to the general
look, feel, content, and context of the image.

2) Active Learning metrics: Unlike Model-Agnostic met-
rics, Model-Aware quality metrics rely on the discriminative
task’s model for quality assessment. Active learning sampling
strategies are often employed to assess the quality of the
synthetic data by predicting its impact on model performance.
Uncertainty based and diversity based methods [2] are the most
common. In the example of object detection using YOLO,
we can use the detection confidence score as a measure of
the distance between a new synthetic image and the average
distribution of real images used to train the baseline model.



Fig. 2: The CIA Framework for improving object detection accuracy through data augmentation using Stable Diffusion and
ControlNet. Real images are taken from the COCO dataset. Notations used in the figure are further explained in the text.

III. PROPOSED CIA FRAMEWORK

CIA is composed of four modules, as seen in Fig.2.
Initially, an Extraction module performs feature extraction

from original images, to acquire the control features that
maintain the integrity of the dataset’s intrinsic characteristics.
These features are used in the next phase by the ControlNet to
condition the output of Stable Diffusion, thus adding an extra
control sequence beyond the conventional text prompt.

The Generation module takes in the extracted features
combined with text prompts to synthesize new images. The
prompts are either manually specified, or automatically gen-
erated. Optionally, In order to put constraints on the resulting
dataset quality, the Quality Assessment module can filter the
generated images using chosen quality metrics, which allows
for retaining only the highest-quality images.

The final stage of the pipeline is the Train and Test block.
Through training different models, we can explore the effects
of using various combinations of original and synthetic data
on task performance.

A. Extraction
We begin by extracting features specific to the chosen

ControlNet. Although custom extractors can be added, a few
are implemented by default in CIA and cover some popular
domains, from extracting human features through poses [19]
or faces [20], to broader generic features like edges [21] and
segmentation masks [22].

Let D denote the original dataset of N real images, where
each image Ii, has a label Li, and a caption Ci. Then, with
the selected extractor E , the feature image Fi extracted from
Ii is given by: Fi = E(Ii).

B. Generation

Several generators could be obtained by combining the cho-
sen ControlNet model with any compatible Stable Diffusion
model. Once the Diffusion model is chosen, the generator G
is able to generate the synthetic image Si, for each extracted
feature Fi from an image Ii, and the text prompt Ci (the
caption of the original image). Such that Si is given by
Si = G(Fi, C

′

i).
To introduce more diversity in generated images, we use

modified captions C
′

i . Many methods could be used to generate
prompts, such as LLMs (e.g., LLama2 [23]). However, the
default prompt generator T of CIA follows a simple imple-
mentation. It takes a prompt Ci and a vocabulary to produce
a new prompt C

′

i . For example, T modifies Ci = a man in a
red shirt, by substituting words from a vocabulary: {v0: [man,
woman, child] , v1: [red, black, yellow]}. a possible modified
caption could be C

′

i = a woman in a yellow shirt. We can
generate many modified captions C

′

ij , meaning j possibilities
of synthetic images generated from a single real image where
j ∈ {0, 1, 2, . . . , (

∏n
i=1 vi)− 1}.

The new text prompts are the input prompts of Stable
Diffusion. Its output is conditioned by the control features



from the Extraction module. Finally, we get the new D′ dataset
of generated images. By default, the labels of the original
images are conserved in the generated ones.

C. Quality Assessor and Sampler

To assess the quality of synthetic images in D′, we introduce
a Quality Assessment module that filters out low quality
images. Here, the quality of Si can be defined according to
any metric suitable for the task. The quality score qi is then
computed using the selected metric Q from the set of Quality
Metrics Q such that qi = Q(Si). The quality metrics imple-
mented in CIA includes IQA and Active Learning metrics.

D. Train and Test

We can train and test multiple models for the task at hand.
Through modifying generation parameters, we can choose the
amount of synthetic data in this training set. Optionally, if
the Quality Assessment module is used, we can control the
quality thresholds of the added synthetic data. Performances
of the model are evaluated on a validation set during training,
and on a test set after training. Both sets are constituted of
real images only.

IV. EXPERIMENTAL SETUP

We preformed a case study on human object detection to
prove the framework’s effectiveness. In this toy example, we
only have access to a limited dataset that leads to suboptimal
performances. The goal is to study how to optimally improve
performances, by adding CIA-generated synthetic images. The
Generation parameters of Stable Diffusion were not optimized
and kept constant. YOLOv8n [24] was used as the object
detection model. For each experiment, it was trained for 300
epochs using the training parameters from [25] with the SGD
optimizer. Experiments were conducted on subsets of Common
Objects in Context (COCO) [26] and Flickr30k Entities [27].

A. Datasets

COCO was processed to focus on a subset of images
containing only one instance of the ”PERSON” class, where
objects take an area between 5% and 80% of the image. In
Flickr, objects are labelled with textual segments without con-
sistent class annotations. We processed the textual descriptions
to automatically annotate the images with the ”PERSON”
class. The inconsistency in Flickr’s annotations provided a
robust stress testing ground for CIA, simulating the variability
and imperfection common in real-world datasets. Three types
of training sets were created for both datasets :

1) Baseline: Contains real images. One lower D250 (250
images) and one upper D500 (500 images) baselines were used
as basis for comparison.

2) Synthetic: To evaluate the impact of adding synthetic
images on object detection performance, a larger synthetic
dataset D′

1250 (1250 images) was generated by using five
distinct auto-generated captions (C ′

1, ..., C
′
5) for each sample

in D250. Multiple datasets were then created with different
proportions (250,500,...,1250) of synthetic images sampled
from D′

1250 and added to D250.

3) Ablation: To compare the addition of new synthetic data
to simply training on real data for more epochs. We duplicated
the images from D125 to obtain Dablation

375 , Dablation
500 , ..., Dablation

1500 .

B. Experiments

With these datasets, three experiments presented hereafter
were conducted. The first one was done using both COCO and
Flickr images, while only COCO was used for the two others.

1) ControlNet effect: To analyze the effects of choosing
a good ControlNet that fits the task, we compared several
models. Four models were chosen. Some tailored for people
detection (OpenPose or MediaPipe), and others are more
generic (Canny Edge and Segmentation), and suitable for
various types of datasets and contexts. All four are compatible
with Stable Diffusion v1.5 (runwayml/stable-diffusion-v1-5)
from the Hugging Face platform. Example of CIA-generated
images can be observed on Fig.1 for the first three.

We added a deficient extraction module to the case study, to
understand how the usage of bad conditions affects the results.
We used the Segmentation extractor, with a transposed seg-
mentation mask as a condition instead of the true segmentation
mask. As a result (see Fig.3), this new extraction module,
False-Segmentation, generated bad quality images. Not only
the shape and position of the label bounding box are affected1,
but the content of the image is not necessarily coherent with
the label anymore.

Fig. 3: Examples of synthetic images generated with Control-
Nets Segmentation and False-Segmentation from the same real
image as in Fig.1. Left: YOLOv8m-seg’s segmentation mask
of the real image (top) and synthetic image generated (bot-
tom). Right: synthetic image generated using the transposed
segmentation mask.

2) Data Augmentation additivity: This experiment aims
at illustrating the first claim stated in Section I, i.e. CIA
augmentation can independently be used along with other
data augmentation methods. Let’s call this property additivity.

1Bounding boxes coordinates are defined in relative coordinates and de-
pends on the Height and Width of the image.



Fig. 4: Performance Evaluation of the trained YOLOv8 models on test set. Influence of 5 ControlNets (Canny Edge, OpenPose,
MediaPipe, Segmentation and False-Segmentation) (a) on COCO dataset (b) on Flickr dataset. Evaluation of gain using
synthetic images in addition to data augmentation on COCO dataset (c) medium (d) high.

We analyzed three levels of data augmentation already im-
plemented in YOLOv8 [28]. (1) Low augmentation includes
scale, translation, hue saturation and mosaic. (2) Medium aug-
mentation, adds random shear and rotation with a maximum
±5 and ±10 degrees respectively, and a 10% probability of
applying copy-paste. High augmentation has the same setting,
with a 20% probability of applying copy-paste and mix up. In
the latter, we named the models trained on those augmentation
levels: low, medium, and high models.

3) Sampling with quality metrics: To showcase the ability
of CIA to filter images according to predefined metrics,
smaller synthetic datasets D′ were refined. The top n images
were selected from D

′Q
1250 according to the quality metric Q.

This process enabled the creation of high-quality synthetic
subsets D

′Q
n−high-quality. This approach yielded datasets with

varying sizes from D
′Q
125−high-quality to D

′Q
875−high-quality, each

comprising the highest quality images according to the quality
metric. BRISQUE, ClipIQA, and NIMA were employed in
addition to Model-Aware Active Learning metrics. Mainly,
CORE-SET and confidence-score based selection. In this
second method, images with the lowest confidence values pre-
dicted by the model are selected. The selection process unfolds
over five rounds, with an incremental increase of 125 samples
per round to produce 5 synthetic datasets D

′Q
n−high-quality.

V. RESULTS

In this section, the results of the case study for the three
aforementioned experiments are presented before being dis-

cussed to highlight the possibilities of CIA.

A. ControlNet effect

Evaluating the influence of different ControlNets on en-
hancing YOLOv8’s object detection capabilities, focuses on
variations in mAP. This evaluation, depicted in Fig.4 (a) and
(b), reveals the significance of ControlNet choice on perfor-
mance. While most ControlNets led to an increase in mAP
compared to D250, and Dablation

n , none matched D500 perfor-
mance. Notably, Mediapipe exhibits a decline in performance.
This could be explained by images where the object deviates
from the original bounding box (Fig.1). We then tested False-
Segmentation, explained in section IV-B, and obtained similar
results to Mediapipe. This confirms that the choice of the
ControlNet needs to be consistent with the task domain.

On the contrary, Canny Edge, OpenPose, and Segmentation
contributed positively to mAP. This improvement was notable
up to 750 synthetic samples, beyond which mAP increase was
considered not significant.

B. Data augmentation additivity

The second study aimed to analyze the impact of adding
synthetic images to other data augmentation techniques to
determine the value of synthetic data. The results are shown
in Fig.4 (a), (c) and (d). We observe that using synthetic data
never leads to lower performances for efficient ControlNets at
all data augmentation levels, as demonstrated by the higher



mAP compared to Dablation
n . We can also see that the perfor-

mances when using Canny Edge with low data augmentation
level are the same as the medium baseline, coupled with the
fact that high baseline is lower than medium baseline. Hence,
classic augmentation methods are prone to cause overfitting,
while CIA images guarantee good performance even at higher
level of augmentation if the ControlNet is chosen correctly.

C. Sampling with quality metrics

The aim of this experiment was to refine the pipeline for op-
timal outcomes. The results for Canny Edge and Mediapipe are
illustrated in Fig.5, but results are similar for all ControlNets:
none of the sampling strategies significantly outperformed
random sampling. This suggests that prioritizing images based
solely on features like visual quality or diversity, may not be
the most effective strategy for model improvement.

Fig. 5: Performance Evaluation of the trained YOLOv8 models
on test set. Influence of sampling methods (ClipIQA, NIMA,
BRISQUE, CORE-SET, confidence) on COCO dataset for
ControlNet (a) Canny Edge (b) MediaPipe. ”random” sam-
pling refers to plots (a) and (b) of Fig.4 for which the synthetic
images are selected randomly.

VI. DISCUSSION

This case study provides guidelines for using the CIA
framework effectively. We demonstrated that adding synthetic
images generated with the appropriate ControlNet can enhance
detection performance. These images can also be used in
conjunction with basic data augmentation. The analysis of the
influence of sampling methods indicates that the diversity of
the generated images may not be optimal. Exploring other
hyperparameters during the generation process may lead to
better results. Nonetheless, it is still far superior to classical
methods even at very high levels of augmentation.

Fig. 6: Examples of synthetic images generated with CIA from
different reference image. (Top) Changes in the point of view
with the same reference image (turning back or turning away).
(Bottom) Changes in style (from photography to poster or
painting).

An overview of the different types of images that can
be produced with the five studied ControlNets was already
given in Fig.1, Fig.2 and Fig.3. However, Fig.6 displays the
introduction of new patterns in the images. Changes in the
background (snow, forest, sand, etc.), point of view (turning
back or turning away), and style (realistic, drawing, painting,
photography, etc.) can be observed. Such differences could be
of high interest depending on the task. This is merely a glimpse
of the generation possibilities, that can be tailored through the
prompt and the Stable Diffusion model choice, both of which
can be easily modified with the CIA framework.

VII. CONCLUSION

CIA offers a plug-and-play capability for developing, test-
ing, and evaluating custom image generation pipelines. This
framework has the potential to have a significant impact on
the field of computer vision by providing researchers with
a powerful tool for augmenting datasets and exploring new
metrics and diffusion models. We demonstrated the capabil-
ities of CIA in augmenting limited object detection datasets.
But, the adaptability of the CIA framework allows for easy
extension to other tasks like classification, segmentation or
tracking. It allows for the incorporation of custom Diffusion
models, ControlNet models and quality metrics to further adapt
CIA to any application. Moreover, through its modularity, a
module can easily be replaced or added. For example, adding
other generative AI methods (not based on Stable Diffusion).
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