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ABSTRACT
Collaborative software development through GitHub repositories
frequently relies on bot accounts to automate repetitive and error-
prone tasks. This highlights the need to have accurate and efficient
bot identification tools. Several such tools have been proposed in
the past, but they tend to rely on a substantial amount of historical
data, or they limit themselves to a reduced subset of activity types,
making them difficult to use at large scale. To overcome these
limitations, we developed RABBIT, an open source command-line
tool that queries the GitHub Events API to retrieve the recent events
of a given GitHub account and predicts whether the account is a
human or a bot. RABBIT is based on an XGBoost classification
model that relies on six features related to account activities and
achieves high performance, with an AUC, F1 score, precision and
recall of 0.92. Compared to the state-of-the-art in bot identification,
RABBIT exhibits a similar performance in terms of precision, recall
and F1 score, while being more than an order of magnitude faster
and requiring considerably less data. This makes RABBIT usable
on a large scale, capable of processing several thousand accounts
per hour efficiently.
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1 INTRODUCTION
The GitHub social coding platform enables collaborative software
development, involving many activities such as updating depen-
dencies, opening new issues and pull requests, performing code
reviews, committing code, creating branches and tags, and pub-
lishing releases [4, 6]. As some of these activities can be repetitive
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and error-prone, software repositories tend to use automation tools
such as GitHub Actions workflows, GitHub Apps and bot accounts.
Bot accounts (referred to as bots in the remainder of this paper) are
regular GitHub accounts that use some automated software agent
to perform activities in the repositories they are involved in [13].

Bots have been shown to belong to the top contributors in GitHub
repositories [10]. Disregarding the contributions of such automated
agents could lead to wrong decisions for organisations aiming to
accredit the top human contributors in their projects, as well as to
incorrect conclusions during empirical socio-technical analyses [2].

To distinguish bots from human contributors, several bot identifi-
cation techniques have been proposed in the past [1, 7, 8]. However,
a large amount of data of different nature (e.g., commit messages,
comments in issues and pull requests, as well as account metadata
such as login, name, bio, number of followers, account tag and so
on) is required by these techniques to identify bots, making them
difficult to use at large scale. Furthermore, most of these techniques
detect bots by considering a limited subset of activity types only,
even though bots have been active in as many as 24 distinct activity
types [4].

Our goal is to create a bot identification tool that takes all these
activity types into account, while being able to process thousands
of accounts on an hourly basis with a limited amount of data. To
achieve this goal, we developed RABBIT, a recursive acronym for
“RABBIT is an Activity-Based Bot Identification Tool”. RABBIT is
publicly released on GitHub1 as an open source Python tool that
can be easily installed using pip. It takes as input a GitHub account,
extracts its recent events from the GitHub Events API, and considers
the account’s activities to quickly determine if it corresponds to a
bot or a human.

2 RELATEDWORK
Many bot-based studies have been carried out in the past, for dif-
ferent purposes. Some focused on categorizing bots in GitHub
repositories [12, 13], or identifying the challenges in using bots
during collaborative software development [11, 14]. To assist such
studies, several bot identification techniques and tools have been
proposed [1, 7–9]. This section presents some of these studies and
bot identification techniques.

Categorising bots. By analysing the activities of 48 different bots
in 93 GitHub projects, Wessel et al. [13] identified 12 different tasks
that bots perform in those projects. Those tasks include reviewing
pull requests, running automated tests, building projects, analysing

1https://github.com/natarajan-chidambaram/RABBIT
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and updating dependencies, and creating issues. They identified
significant differences in 44 GitHub projects in terms of number of
commits, number of changed files, number of comments and so on
before and after bot adoption. Wang et al. [12] identified 201 bots in
613 GitHub projects and grouped them into 6 categories based on
their tasks: (1) CI assistance, (2) issue and pull request management,
(3) code review assistance, (4) dependency and security analysis,
(5) developer and user community support, and (6) documentation
generation. They identified that 60% of these projects use at least
one bot to automate routine tasks and 74 out of 201 bots belong to
more than one category.

Challenges in using bots. Storey et al. [11] studied the unintended
negative impacts that bots might create in software projects and
among developers. Although bots automate repetitive and error-
prone tasks, they might not adapt to the cultural changes in the
organisation, reduce interaction between team members, and bring
interruptions and distractions.Wessel et al. [14] interviewed 21 prac-
titioners and identified 25 challenges that development bots bring
to software projects. They categorised these challenges into three
categories: interaction with bots (e.g., intimidating newcomers, pro-
viding non-comprehensive feedback, impersonating developers),
bot adoption (e.g., burden to set up configuration files, limited con-
figurations, handling technical failures) and bot development (e.g.,
building multitasking bots, restricted bot actions by GitHub API,
hosting and deploying bots).

Bot identification tools. Dey et al. [7] developed BIMAN, an en-
semble model that identifies bot involved in commits based on a
combination of three different approaches (i) having ‘bot’ in the
account name (e.g., jenkins-bot), (ii) text similarity and patterns
in commit messages, and (iii) features related to files modified in
commits (e.g., number of unique file extensions). They achieved a
precision of 0.667, recall of 0.866 and F1-score of 0.754. The main
limitation of this approach is that it only considers commit activi-
ties.

Golzadeh et al. [8] developed BoDeGHa, a classification model
and associated tool to identify bots based on features related to com-
ments in issues and pull requests. They also developed BoDeGiC [9]
a model and associated tool to identify bots based on commit mes-
sages. For BoDeGHa, they created a manually labelled ground-truth
dataset of 5,000 GitHub contributors of which 527 were bots, and
for BoDeGiC they trained the model on 6,922 accounts that made
commits in git repositories. The limitations of these approaches
are that (i) bot identification requires data related to comments in
commits, issues and pull requests, and (ii) predictions are made on
a single-repository level, implying that predictions may diverge
across repositories [3].

Abdellatif et al. [1] developed BotHunter, a state-of-the-art and
accurate bot identification tool combining features used by BoDeGHa,
BIMAN and some additional ones. Since the model is using features
based on data of different nature (such as account bio, comments,
issues, pull requests and comments) it needs to download a large
amount of data to provide its prediction, requiring hours to process
thousands of contributors.

3 GROUND-TRUTH DATASET
To train and test a classification model for our bot identification
tool RABBIT, we need a sufficiently large ground-truth dataset of
GitHub accounts that are labeled as bots or humans. We started
the dataset creation by combining (i) labelled accounts that were
published in our previous work [4] and (ii) accounts that were
published by Wyrich et al. [15]. From these datasets, we removed
the accounts that performed less than 5 events (a condition required
by RABBIT’s classification model). We also ignored GitHub Apps as
they are already marked as ‘Bot’ by GitHub. Applying both filters
resulted in a dataset of 234 bots and 502 humans from [4] and 629
accounts from [15].

These 629 accounts were independently labelled as bot, human
or not sure by two researchers, relying on information derived
from the account’s GitHub profile, the GitHub activity available for
this account, and the account’s event sequence that was extracted
through the GitHub Events API. The label not sure was used in
case a rater did not have enough information to come to a decision,
or when the account exhibited a behaviour that mixed human
and bot activity. Cohen’s kappa (^) was used to measure inter-
rater agreement. The raters agreed on the label for 561 accounts
and disagreed for 68 accounts, leading to a substantial agreement
(^ = 0.79). A third researcher was involved to discuss all 68 cases
on which the first two raters disagreed, as well as the 13 cases
where both raters were not sure. After this discussion, agreement
was reached to label 410 accounts as bot, 189 as human, while 30
accounts were discarded since at least one rater was still not sure.

Overall, we identified 1,335 accounts, of which 644 are bots and
691 are humans.

4 ACCOUNT CLASSIFICATION MODEL
RABBIT relies on an account classification model for identifying
bots. To create such a model we derived a set of features from
the activity sequences extracted for each GitHub account in the
ground-truth dataset. In previous work [5], we identified distin-
guishing characteristics for bot and human users. Carrying out
some further experimentation we came up with 45 potential distin-
guishing features and after feature selection we identified the six
most important features for the classification model:

(1) the number of distinct activity types carried out by the ac-
count,

(2) the mean number of activities carried out (by the account)
per activity type,

(3) the median time between two consecutive activities of dif-
ferent types carried out by the account,

(4) the mean number of activities carried out (by the account)
per repository to which the account has contributed,

(5) the number of distinct owners of all repositories the account
has contributed to,2

(6) the (Gini) inequality in the time between consecutive activi-
ties carried out by the account.

To create a classification model based on these six features, we
split the dataset into a training/validation set containing 60% of the
accounts. The remaining 40% were kept for testing the model on
2Any GitHub repository has the form www.github.com/OWNER/REPO where
OWNER is the repository owner, and REPO is the repository name.
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Table 1: Performance scores of the best model for seven con-
sidered classifiers and the ZeroR baseline, in descending or-
der of weighted F1 score

bots humans weighted
classifier P R P R P R F1 AUC
XGBoost 0.939 0.933 0.941 0.940 0.940 0.937 0.937 0.974
GB 0.934 0.933 0.939 0.938 0.937 0.936 0.936 0.978
RF 0.929 0.938 0.944 0.931 0.937 0.935 0.934 0.976
LDA 0.915 0.905 0.915 0.919 0.915 0.912 0.912 0.893
DT 0.917 0.833 0.860 0.929 0.888 0.983 0.882 0.958
SVM 0.799 0.864 0.865 0.798 0.833 0.830 0.829 0.937
CNB 0.751 0.944 0.933 0.707 0.845 0.821 0.819 0.894
ZeroR 0.000 0.000 0.519 1.000 0.269 0.519 0.354 0.500

unseen data.We used stratified splitting to have a similar proportion
of bots and humans in both sets. This resulted in a training set of
801 accounts composed of 386 bots (i.e., 48.2%) and 415 humans,
and a test set of 534 accounts composed of 258 bots (i.e., 48.3%) and
276 humans.

We used the training/validation set to determine the best clas-
sification model, following a grid-search hyper-parameter tuning
10-fold cross-validation process. We evaluated seven commonly
used classifiers as candidates for the model: Decision Trees (DT),
Random Forest (RF), Gradient Boosting (GB), eXtreme Gradient
Boosting (XGB), Support Vector Machine (SVM), Linear Discrim-
inant Analysis (LDA), and Complement Naive Bayes (CNB). We
compared these classifiers against the ZeroR baseline, a classifier
that predicts the majority class (i.e., human) for all accounts and
hence does not have any actual predictive power.

To find the best model, we varied the input parameters of these
classifiers, resulting in 3,734 candidate models. To evaluate the per-
formance of these models on the training set, we used Area Under
the ROC Curve (AUC) and the weighted version of precision (P),
recall (R), and F1 score. Table 1 reports the performance scores for
the best model for each considered classifier. XGBoost performed
better than the other models with an AUC of 0.974, weighted preci-
sion of 0.940, weighted recall of 0.937, and weighted F1 of 0.937. The
second and third best models GradientBoost and Random Forest
had a performance that is quite close to XGBoost. The evaluation
of the model on the test set with 40% of unseen data is presented in
Section 6.

5 TOOL DESCRIPTION
Using the classification model identified in Section 4, we devel-
oped RABBIT as an open source command-line tool to allow re-
searchers and practitioners to easily determine the bot nature of
GitHub accounts. RABBIT is publicly released on https://github.
com/natarajan-chidambaram/RABBIT and can be installed using
pip install git+https://github.com/natarajan-chidambaram/RABBIT.

The mandatory inputs are a GitHub API key and either the
name of a single account or a text file of GitHub accounts (one
per line) to be classified. For each account, RABBIT first checks
whether it corresponds to a GitHub App by verifying that the
account name ends with [bot]3 and the type returned by the GitHub
Users API is Bot. For the remaining user accounts, RABBIT queries
the GitHub Events API to extract up to 300 events, converts these

3GitHub reserves the suffix [bot] for GitHub Apps only.

event sequences into activity sequences, computes the six features
required by the classification model, and outputs for each account
the prediction and its confidence.

Listing 1 gives an example of using RABBIT in practice, providing
eight login names in the input file names.txt. (Login names for
human users have been anonymised to comply with the GDPR
regulations.) RABBIT predicts the type for each account: app, bot,
human, unknown or invalid. If the accountmade less than the default
minimum of five events it is reported as unknown, whereas it is
reported as invalid if the account does not exist in GitHub.

% rabbit --input−file names.txt --key <MYAPIKEY>
account prediction confidence

github−actions[bot] app 1.0
johnpbloch−bot bot 0.998

tensorflow−jenkins bot 0.993
<ANONYMISED> human 1.0

codecov bot 0.986
<ANONYMISED> human 0.995

cxbot unknown NaN
renovate invalid NaN

Listing 1: Example of RABBIT usage

RABBIT provides a confidence score for the reported predictions.
For app, the confidence is always 1.0. For unknown and invalid
it is NaN. For bots and humans, the confidence is based on the
probability (between 0 and 1) that the model classifies the account as
a bot. A probability > 0.5 leads to a bot decision, while a probability
≤ 0.5 leads to a human decision. The confidence (between 0 and 1)
is computed as |𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 0.5| ∗ 2.

RABBIT has several optional arguments to change its default
behaviour. A full description of these optional arguments can be
obtained by typing rabbit --help in the terminal. In particular,

--min-events specifies the minimum number of events that
need to be considered for making a prediction (default is 5).

--max-queries specifies howmany API queries should be made
for each account, either 1, 2 or 3 (default is 3).

--verbose outputs additional information, such as the values
of all features that were used to make the prediction.

--csv and --json can be used to save the output as a comma-
separated-values or a JSON file, respectively.

6 TOOL EVALUATION
6.1 Predictive power
We evaluated RABBIT on a test set corresponding to 40% of the
ground-truth dataset (258 bots and 276 humans). Table 2 reports
the confusion matrix and performance metrics. One can observe
that 21 bots are misclassified as human (FN) and 21 humans are
misclassified as bot (FP). This resulted in an overall precision, recall
and F1 of 0.919 each and AUC of 0.921.

Table 2: Confusion matrix and performance on test set

confusion matrix weighted scores
classified as
bot

classified as
human

P R F1 AUC

258 bots TP: 237 FN: 21 .919 .919 .919 -
276 humans FP: 21 TN: 255 .924 .924 .924 -
534 accounts 258 276 .919 .919 .919 .921

https://github.com/natarajan-chidambaram/RABBIT
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When analysing those misclassifications, we observed that they
could be considered as outliers with atypical behaviour. For example,
some of the misclassified accounts performed very few events.

We hypothesised that the number of misclassifications is mostly
driven by the number of available events for these accounts. For
this reason, we clustered the accounts in three bins based on the
number of events they performed: (0,100], (100,200] and (200,300].
For each bin, we computed the confusion matrix. Table 3 provides
the results. In the test set, among 534 accounts, 248 (85 bots and
163 humans) have performed at most 100 events, 86 (53 bots and
33 humans) accounts have performed more than 100 events and at
most 200 events and the remaining 200 accounts (120 bots and 80
humans) have performed more than 200 and at most 300 events.
One can observe that the number and proportion of correct classifi-
cations (TP and TN) increase as the number of events increases. The
opposite observation can be made for misclassifications (FN and
FP). By considering accounts that have performed (0,100] events,
86.3% (214 out of 248) of them are correctly identified, while this
proportion increases to 94.2% (81 out of 86) when considering the
accounts that have performed (100,200] events, and to 98.5% for
accounts with more events.

6.2 Runtime evaluation
We compared the performance of RABBIT with the state-of-the-art
bot identification tool BotHunter [1] by executing it on 23 January
2024 on the test set of 534 accounts. This resulted in an overall
precision of 0.939, a recall of 0.899 and an F1-score of 0.919. These
results are very similar to those obtained with RABBIT.

We also compared the execution time and the amount of data
required to make these predictions. The execution time was mea-
sured on an Intel Xeon W-1290P with 3.7 GHz CPU. We relied on
the network traffic monitoring tool NetHogs 0.8.7 to measure the
amount of data required and the number of API queries needed for
both tools.

Table 4 reports on the results. We observe that BotHunter re-
quires 3.5 times more data than RABBIT. With respect to execution
time, RABBIT only took 8 minutes to process the 534 accounts,
while BotHunter took more than 50 times longer (7 hours and 19
minutes). During these 7 hours and 19 minutes, BotHunter was
idle for around 70 minutes because it repeatedly exceeded GitHub’s
hourly API rate limit (5,000 queries per hour). Indeed, BotHunter
required more than 37K queries on the GitHub API to retrieve the
data for these 534 accounts. In contrast, RABBIT only needed 1,040
queries. By extrapolating this number, RABBIT should be able to
process more than 2,500 accounts per hour while staying under
GitHub’s hourly API rate limit.

Table 3: Confusion matrix w.r.t. the number of events

number of events
(0,100] (100,200] (200,300]

bots 85 53 120
TP 68 (80%) 50 (94.3%) 119 (99.2%)
FN 17 3 1

humans 163 33 80
TN 146 (89.6%) 31 (93.9%) 78 (97.5%)
FP 17 2 2

In summary, RABBIT is able to achieve similar prediction perfor-
mance than the state-of-the-art bot identification tool BotHunter,
while being more than an order of magnitude faster and requiring
considerably less data.

Table 4: Runtime evaluation of RABBIT and BotHunter

Tool execution time data received API queries
BotHunter 7h19m 214.1MB 37,130
RABBIT 8m 61.5MB 1,040

6.3 Limitations
A first limitation is that RABBIT relies only on an account’s public
events, since the API does not provide access to events in private
repositories. Second, RABBIT only relies on information obtained
from the GitHub Events API. One could consider extracting other
event types through additional APIs, such as GitHub’s Issues API,
but this would require more API queries, more data to be down-
loaded, and more execution time. Third, since the Events API re-
turns the most recent events only, RABBIT is unable to predict
accounts that were not recently active. Finally, as for any known
bot identification tool or even for human raters, it is impossible to
predict so-called mixed accounts that combine both human and bot
behaviour [2].

7 CONCLUSION
During socio-technical empirical studies, the contributions made
by GitHub accounts should be treated differently depending on
their nature (bot or human). Existing bot identification tools are
often impractical at scale since they usually require large amount
of data, take a lot of time to process thousands of accounts, or are
based on a limited set of characteristics (such as the presence of
“bot” in the name). We therefore proposed RABBIT, an open source
bot identification tool that accurately predicts whether a GitHub
account is a bot or a human, by relying on its recent events made on
GitHub. RABBIT uses an XGBoost classification model to predict
the account type. Trained on a ground-truth of 644 bots and 691
human accounts, the model achieves a very good performance on
unseen data, reaching a precision, recall, F1-score of 0.919 each
and AUC-ROC of 0.921. To achieve this precision, the model re-
quires only six different features related to the amount and duration
of activities, to activity types and to the repositories the account
has contributed to. Compared to the state-of-the-art, RABBIT is
more than 50 times faster and requires 3.5 times less data. RABBIT
can process thousands of accounts per hour while staying under
GitHub’s API hourly rate limit, making it suitable for large scale
analysis.
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