
Université de Mons
Faculté des Sciences

Département d’Informatique

Improving Bot Identification in Collaborative
Software Development on GitHub

Natarajan Chidambaram

A dissertation submitted in fulfilment of the requirements of
the degree of Docteur en Sciences

Advisors
Prof. Dr. Tom Mens University of Mons, Belgium
Prof. Dr. Souhaib Ben Taieb University of Mons, Belgium, and

Mohamed bin Zayed University of Artificial
Intelligence, United Arab Emirates

Jury members
Prof. Dr. Stéphane Dupont University of Mons, Belgium
Dr. Alexandre Decan University of Mons, Belgium
Prof. Dr. Alexander Serebrenik Eindhoven University of Technology, The Netherlands
Prof. Dr. Mairieli Wessel Radboud University, The Netherlands

May 22, 2025



.



Acknowledgements

As I receive my highest academic degree, I am grateful to the people who have sup-
ported me throughout my PhD journey. Your guidance, encouragement, assistance,
and support have been invaluable in helping me reach this milestone.

First and foremost, I would like to express my sincere gratitude to my supervi-
sor Prof. Dr. Tom Mens, for his unwavering support and guidance throughout this
journey. His constant encouragement, insightful expertise, exceptional ideas and con-
structive feedback have been invaluable in shaping my research and academic growth.
I am especially grateful for his belief in my abilities despite my limited knowledge
in software engineering, and for providing me with the opportunity to work on this
exciting and timely research topic. His insights and guidance have been instrumental
in refining my ideas, conceptualising it and improving the quality of my work. I have
learnt so much about research in general and teaching through practical sessions. The
recommendation letters he wrote for me, from getting a student volunteer position
at an international conference to my role as part of the organising team for multiple
international scientific workshops have been instrumental in helping me to gain key
experiences and skills. Also, thank you for your patience in waiting for me to pro-
vide the text, tables and figures in the last-minute and still finding time to provide
reviews, suggestions, and corrections for me to obtain high-quality results and publi-
cations. I feel privileged to have had the opportunity to work with such a dedicated
professor who motivated and pushed me beyond my expectations, and always being
available whenever I required his valuable guidance. Last but not the least, I am very
thankful for encouraging and allowing me to explore the world too (through seminars,
workshops and conferences) right from Melbourne in Australia to Ottawa in Canada.

I would also like to extend my gratitude to my co-supervisor Prof. Dr. Souhaib
Ben Taieb. Although I did not interact with him much during my PhD, I am grateful
for the support, guidance and insights that he provided through short talks during
coffee/lunch breaks.

I would also like to extend my thanks to the committee members, Prof. Dr.
Stéphane Dupont, Prof. Dr. Gregorio Robles, and Prof. Dr. Mairieli Wessel for reading
my year-end committee reports, and providing their valuable feedback on improving
my work. Their constructive criticism during the committee meetings has helped me

iii



iv

improve the quality of this thesis. Also, I would like to thank Prof. Dr. Alexander
Serebrenik for accepting to be part of my jury and for his valuable feedback on my
work.

I would like to extend my sincere thanks to Dr. Alexandre Decan, for his assis-
tance, feedback and support throughout my PhD. It was very crucial in helping me
to conceptualise the ideas, refine and improve the quality of my research, writing,
coding, and providing replication packages. His knowledge and expertise in the field
of software engineering and data science have been invaluable in shaping my research.
I am grateful for his willingness to share his knowledge and insights through long
discussions, and for the support he provided me to navigate the challenges of my PhD
journey. Also, a special thanks for improving the text in our publications.

I am grateful to my colleagues at the University of Mons, especially the members
of the software engineering lab, for their support and camaraderie. Also, I would
like to thank my colleagues from TRAIL, with whom I had a great opportunity to
collaborate, write project proposals, create a plan for executing research projects,
work and learn. I would like to acknowledge the support of the Walloon region
and the DigitalWallonia4.AI initiative for providing funding for my research. Their
commitment to promoting research and innovation has made this work possible.

I would like to thank all my friends who, one way or another, have supported
me during my PhD. I am grateful for the moments we shared, the laughter, and the
support you provided during challenging times. Your presence and encouragement
have made this journey more enjoyable and fulfilling.

I would like to express my immense gratitude to my parents, who have been a
constant source of support and encouragement throughout my life, including these
past years during my PhD. Their love and belief in me have been a constant source of
motivation. This achievement wouldn’t have been possible if not for their availability
for my untimely virtual calls, willingness to listen to me and provided guidance when-
ever I required. Also, I am thankful to my brother for listening to my technical talks
over the phone and providing me with the much-needed support and encouragement.
I would like to express my heartfelt gratitude to my wife, who came into my life when
I started writing my thesis, and understanding me throughout the last and important
phase of this journey.



Abstract

Contemporary social coding platforms such as GitHub facilitate collaborative dis-
tributed software development. This enables developers to contribute to software
project repositories from different parts of the world. Developers engaged in this plat-
form often perform various activities such as committing files, creating pull requests,
performing code reviews, creating and deleting branches, updating documentation,
deploying and releasing new software versions and so on. As these activities could
be effort-intensive, repetitive and error-prone, repository maintainers and develop-
ers frequently use automated mechanisms (e.g., bot accounts, GitHub Apps, GitHub
automated workflows, and other internal or external automation services) for per-
forming these activities. Bot accounts and GitHub Apps are being widely used in
GitHub repositories and are among the most active contributors in certain reposito-
ries. Determining whether a contributor corresponds to a bot or a human is important
in socio-technical studies, for example to assess the positive and negative impact of
using a bot, analyse their evolution and usage, identify and accredit top contributors,
and so on.

The main aim of this dissertation is to improve bot identification in GitHub.
While multiple bot identification approaches have been proposed in the past, they
suffer from certain limitations that make them difficult to be used in practice. By
creating multiple datasets, developing new bot identification models, and performing
quantitative analysis, we provide several novel contributions. We show that bots are
regularly among the most active contributors, although GitHub does not explicitly
acknowledge the presence of several bots. Also, we show that existing bot identifica-
tion approaches do not perform well in identifying bot contributors. As a first step,
we develop two models to improve bot identification in GitHub. One model leverages
the predictions made by an existing approach across multiple GitHub repositories
and provide an overall improved performance. Another is an ensemble model that
combines the prediction made by these existing approaches to improve bot identifi-
cation in GitHub. Then, we propose a dataset of contributor activity sequences that
can be extracted from low-level events provided by the GitHub REST API. Based
on these activities, we identify features that can statistically differentiate bots from
human contributors engaged in collaborative software development. Also, we propose
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a manually labelled ground-truth of bots and human contributors that can be used
to compare the performance, efficiency and limitations of existing bot identification
approaches. Using this ground-truth and distinguishing features, we train BIMBAS,
a new binary classification model to identify bots based on their recent activities in
GitHub. Through an empirical study, we use BIMBAS to detect the presence of bots
among hundreds of contributors and identify how bots are being used in a large soft-
ware ecosystem. We reveal behavioural differences between bots and humans, and
between different bot categories. To enable the practical use of BIMBAS, we develop
an open-source bot identification tool called RABBIT, which outperforms the efficiency
of existing bot identification approaches.
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CHAPTER 1

Introduction

I started my PhD in August 2021 in the software engineering lab at the University
of Mons, Belgium. This thesis provides details on the empirical analyses that were
performed, and the machine learning models and tools that were developed to improve
identification of bot contributors in GitHub. This thesis is supervised by Prof. Tom
Mens and Prof. Souhaib Ben Taieb.

Multiple software developers often join to develop complex software applications
in a collaborative manner. Such collaboration practices have become a cornerstone
of modern software development. In this chapter, we briefly discuss collaborative
software development in GitHub and various automation practices in GitHub. We
analyse the prevalence of automation mechanisms in GitHub repositories, distinguish
different type of contributors in GitHub, and detail the objectives of this thesis.
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2 Introduction

1.1. Collaborative software development

The software development process involves identifying functional and non-functional
requirements, designing and implementing software applications, testing them, creat-
ing documentation, releasing and deploying the software and maintaining it through-
out its lifetime. Each of these steps is crucial for a software project to serve its users
community for a long time. To achieve this, software development often requires
concerted and collaborative effort from multiple developers that work together as a
team.

The demand for better software products, capitalising on the global resource pool,
providing faster services, and round-the-clock development has led software develop-
ment businesses to distribute their development processes overseas, also known as
global software development (Herbsleb & Moitra, 2001). This has made software de-
velopment an increasingly multisite, multicultural and globally distributed undertak-
ing. It is usual for software companies to have their teams of developers geographically
dispersed across different time zones, often on more than one continent (Herbsleb,
2007). Companies adopting global software distribution practices often face many
challenges related to socio-cultural distance, temporal distance and geographical dis-
tance (Holmstrom et al., 2006). The emergence of social coding platforms such as
GitHub, GitLab, Gitea and BitBucket has solved some of these problems by creat-
ing and sustaining a coherent connection among distributed individuals occupying a
shared cloud space. By creating separate feature branches in software projects, devel-
opers can have a dedicated workspace and merge their code frequently through pull
requests (PR) (Riehle et al., 2009). This enables contributions from third-party devel-
opers as well. Collaborative software development practices have become widespread
in the last decade (Costa et al., 2011; Dabbish et al., 2012) with a sharp rise in popu-
larity of open-source software (OSS) development among big organizations (McClean
et al., 2021; Butler et al., 2022) and the emergence of social coding platforms.

GitHub is the biggest social coding platform with over 100 million developers1
and more than 420 million repositories as of January 2023. It allows contributions
in various forms such as creating new issues when someone detects a bug or a se-
curity problem, wants to have a new feature, would like to improve the quality of
code, wishes to improve documentation and so on. Another example of collaboration
is through PRs (Arora et al., 2017) to integrate new contributions to the software.
After performing code reviews, the project maintainers take the necessary steps (Tsay
et al., 2014) to include or reject the requested contribution. Also, the project main-
tainers might communicate with the contributors through discussions using GitHub
Discussion pages (Hata et al., 2021), comments under issues (Kavaler et al., 2017),
PRs (Zhang et al., 2023) and so on. Additionally, developers and project maintain-
ers communicate through other channels that integrate with GitHub. For example,
through Stack Overflow for technical questions and answers,2 Slack,3 Discord,4 Tele-

1https://github.blog/news-insights/company-news/100-million-developers-and-counting/
2https://github.com/marketplace/stack-overflow-extension-for-github-copilot
3https://github.com/marketplace/slack-github
4https://github.com/marketplace/actions/discord-courier

https://github.blog/news-insights/company-news/100-million-developers-and-counting/
https://github.com/marketplace/stack-overflow-extension-for-github-copilot
https://github.com/marketplace/slack-github
https://github.com/marketplace/actions/discord-courier
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gram, WhatsApp, Mastodon and Gitter for communication among team members,
and JIRA5 for tracking issues.

1.2. Automation practices in GitHub

Repositories hosted on GitHub allow contributions in various forms for a wide variety
of activities (e.g., coding, documenting, checking dependency and fixing security vul-
nerabilities) that developers and maintainers can perform. Many GitHub repositories
allow contributors to submit new code through PRs. This enables project maintainers
to discuss and evaluate external contributions. However, this pull-based development
method significantly increases the workload of project repository maintainers (Gousios
et al., 2015) as the code has to be reviewed, tested, verified with respect to corre-
sponding documentation and adhere to contributor license agreements and so on. For
small projects, maintainers are able to handle the incoming contributions as their
number may remain manageable, but larger projects may face difficulties to scale and
keep up with the pace of maintaining high quality software releases and managing
their dependencies (Young et al., 2021).

As performing such activities can be repetitive, error-prone and effort-intensive,
developers and maintainers tend to adopt automation practices in GitHub. Automa-
tion in GitHub repositories can be achieved through various mechanisms:

• GitHub workflows (Wessel et al., 2023a) are configure automated processes
adopted in repositories to perform one or more jobs.

• GitHub Apps6 are specialised tools that integrate with GitHub, extend GitHub’s
functionality and interact with it.

• GitHub internal automation services (Rebatchi et al., 2024) are readily available
for use by GitHub in repositories by enabling or disabling them in the repository
settings (e.g., Dependabot for automatic dependency updates).

• Bot accounts (Beschastnikh et al., 2017) are GitHub user accounts that perform
automated tasks in repositories.

• External automation services (Biehl, 2017) are third-party tools or systems
that interact with GitHub through webhooks and APIs to automate tasks (e.g.,
Jenkins for continuous integration, JIRA for issue tracking, SonarQube Cloud
and Codacy for code quality analysis, Snyk for scanning vulnerabilities and so
on).

A detailed explanation of these automation practices will be provided in Chapter 2.

5https://github.com/marketplace/actions/setup-jira
6https://docs.github.com/en/apps/creating-github-apps/about-creating-github-apps/

about-creating-github-apps

https://github.com/marketplace/actions/setup-jira
https://docs.github.com/en/apps/creating-github-apps/about-creating-github-apps/about-creating-github-apps
https://docs.github.com/en/apps/creating-github-apps/about-creating-github-apps/about-creating-github-apps


4 Introduction

1.3. GitHub contributors

The previous section mentioned various automation practices that exist on GitHub.
These automation mechanisms contribute to the project development in GitHub
repositories. This section explains the different types of contributors that are consid-
ered in this dissertation.

Figure 1.1: An interaction between a human account, bot account and a bot actor
corresponding to an App in a PR in microsoft/winget-pkgs repository.
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According to the GitHub documentation,7 an actor is an object (typically a User
or a Bot) that can perform activities in GitHub. For the bot actors that correspond
to GitHub Apps and GitHub internal automation services, the GitHub REST API’s
users endpoint8 (which we refer to as users endpoint for short) reports their type
as Bot, while bot accounts and personal user accounts are reported as being of type
User. To carry out activities on a GitHub repository, a human contributor needs to
have a personal user account, or an organisation account.9 Every GitHub user signs in
with their personal account to use GitHub, whereas an organisation account enhances
collaboration between multiple personal accounts. Organisation accounts will not be
considered in this thesis, they serve a different purpose and are therefore considered
out of scope for our research. In the GitHub UI, an activity performed by a User will
be visible under their login name (a unique identifier of a user account in GitHub).

As an illustration, Fig. 1.1 shows a PR10 created in microsoft/winget-pkgs reposi-
tory by a human account (its account name has been greyed out for privacy purposes).
One can observe a couple of comments by the (wingetbot) bot account. This bot ac-
count automates various processes such as automatically updating dependencies and
creating PRs, automating processes in a PR once it is created, and so on. In Fig. 1.1,
wingetbot automatically checks the quality of the PR (verifying if the pipeline is work-
ing as expected), invokes the azure-pipelines[bot] bot actor for the GitHub App Azure
Pipelines11 (a GitHub App that continuously integrates, tests and deploys software
changes) with the required input and add labels upon successful execution of this
pipeline.

An activity performed by a GitHub App (such as Azure Pipelines) or a GitHub
internal automation service (such as Dependabot) will be visible in the GitHub UI
under the name of its respective bot actor. For example, in Fig. 1.1, Azure Pipelines
uses its bot actor azure-pipelines[bot] to make a comment “Azure Pipelines successfully
started running 1 pipeline(s)” in this PR. Another bot actor that can be observed
in Fig. 1.1 is microsoft-github-policy-service[bot] which corresponds to the Microsoft
GitHub Policy Service GitHub App. It is created and maintained by the GitHub
inside Microsoft team, and is the foundation for the compliance and governance efforts
on their GitHub instances.

Fig. 1.2 shows another example. Whenever a PR is created in tommens/calculator-
cucumber, a GitHub Actions automated workflow12 is executed, and its bot actor,
github-actions[bot], posts a comment “Thanks for reporting!” in this PR. The figure
also illustrates the use of SonarCloud that detects security vulnerabilities, bugs and
code smells and provides remediation guidance to help fix issues in the code. A
webhook to SonarCloud is triggered upon PR creation, resulting in a PR comment

7https://docs.github.com/en/graphql/reference/interfaces#actor
8https://api.github.com/users
9https://docs.github.com/en/get-started/learning-about-github/

types-of-github-accounts
10https://github.com/microsoft/winget-pkgs/pull/146788
11https://github.com/apps/azure-pipelines
12https://github.com/tommens/calculator-cucumber/blob/master/.github/workflows/

comment.yml

https://docs.github.com/en/graphql/reference/interfaces#actor
https://api.github.com/users
https://docs.github.com/en/get-started/learning-about-github/types-of-github-accounts
https://docs.github.com/en/get-started/learning-about-github/types-of-github-accounts
https://github.com/microsoft/winget-pkgs/pull/146788
https://github.com/apps/azure-pipelines
https://github.com/tommens/calculator-cucumber/blob/master/.github/workflows/comment.yml
https://github.com/tommens/calculator-cucumber/blob/master/.github/workflows/comment.yml


6 Introduction

Figure 1.2: A PR in tommens/calculator-cucumber repository is commented by the
respective bot actor for the internal automation service for GitHub Actions workflows
as well as the external quality analysis service - SonarCloud.

using the SonarCloud GitHub App13 that uses its bot actor sonarcloud[bot] to post
the comment.

GitHub also allows the use of so-called machine users to automate activities that
are repetitive and error-prone. A machine user has a personal account just like a
human, but does not always reveal itself as an automated tool in its GitHub account
profile. For example, Fig. 1.3 shows three different account profiles of machine users.
Fig. 1.3a explicitly signals itself as a machine account and provides details such as a
link to its website, purpose and so on. Fig. 1.3b shows the machine user coveralls for
providing automated test coverage reports that does not immediately reveals itself
as a tool, but it does provide a link to the tool’s website and location. Fig. 1.3c
shows a machine user for merging PRs that does not reveal any information about

13https://github.com/marketplace/sonarcloud

https://github.com/marketplace/sonarcloud
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(a) (b) (c)

Figure 1.3: Example of a machine user that (a) reveals itself as a machine account
in its profile description and has a link to its website, (b) does not have a profile
description but has a link to its website, and (c) does not reveal any information.

itself making it difficult to know if we are dealing with a human account or a machine
user. Detecting machine users is crucial for socio-technical studies of collaborative
software development that require the activities performed by machine users to be
treated differently from that of humans.

This dissertation will adopt the following terminology regarding GitHub contrib-
utor types. We will refer to human GitHub contributors having a personal user
account as human accounts, to the machine users as bot accounts. GitHub also
allows using internal automation services (e.g., Dependabot) and so-called Apps14 in
repositories to perform automated activities. We will collectively refer to these two
automation mechanisms as bot actors. We will use the term bots to collectively
refer to both bot accounts and bot actors. We will use the term humans to refer to
human accounts. We will use the generic term contributors to collectively refer to
both humans and bots. Fig. 1.4 visually summarises this terminology.

14https://docs.github.com/en/apps

https://docs.github.com/en/apps
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contributors

bot accounts bot actors human accounts

bots

GitHub Apps GitHub internal 
automation services

Figure 1.4: Terminology used in this dissertation.

1.4. Prevalence of bots in large GitHub repositories

As GitHub repositories can be quite large in terms of number of contributors and their
activities, bots tend to be frequently used to automate effort-intensive, repetitive and
error-prone activities. They perform a wide range of tasks including refactoring,
generating bug patches, updating dependencies, and checking licenses (Wyrich &
Bogner, 2019; Monperrus et al., 2019; Mirhosseini & Parnin, 2017). To demonstrate
the prevalence of bots in GitHub repositories, we performed a preliminary study in
November 2021 (Golzadeh et al., 2022b) based on a selection of 10 large and active
open-source projects for popular programming languages (JavaScript, Java, Python
and Rust):

1. VueJS (https://github.com/vuejs/vue), a very popular front-end framework
for JavaScript with more than 350 contributors and 3K commits.

2. Servo (https://github.com/servo/servo), an experimental browser engine
written in Rust with more than 1K contributors, 40K commits and 30K depen-
dents.

3. Cucumber JVM (https://github.com/Cucumber/cucumber-jvm), a Java im-
plementation of the popular cucumber test framework, with more than 250
contributors and 6K commits.

4. Libc (https://github.com/rust-lang/libc), a Rust implementation to in-
teroperate with “C-like” code on platforms supporting Rust. It has more than
500 contributors and 6K commits.

https://github.com/vuejs/vue
https://github.com/servo/servo
https://github.com/Cucumber/cucumber-jvm
https://github.com/rust-lang/libc
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bot actor

bot account

human account

X

Figure 1.5: Bots among the top 20 most active committers in 10 popular open-source
projects.

5. Boto (https:github.com/boto/boto3), an Amazon Web Services Software De-
velopment Kit for Python that has more than 5K commits, 100 contributors and
400K dependents.

6. Mockito (https://github.com/mockito/mockito), a popular Java mocking
framework for unit tests with more than 250 contributors and 6K commits.

7. Rollup (https://github.com/rollup/rollup), a module bundler for JavaScript
with more than 300 contributors, 5K commits and 11M dependents.

8. ts-jest (https://github.com/kulshekhar/ts-jest), a JavaScript testing frame-
work that is used to test projects written in Typescript. It has 170 contributors,
more than 4K commits and more than 1M dependents.

9. Prettier (https://github.com/prettier/prettier) is an opinionated code
formatter written in JavaScript. It has more than 600 contributors with more
than 9K commits and 7M+ dependents.

10. Karma (https://github.com/karma-runner/karma) is a test runner for Java-
Script. It has more than 300 contributors, 2.5K commits and 3M dependents.

We retrieved the contributors with the highest number of commits in these ten
projects, and determined their contributor type. To do so, we relied on the users
endpoint. We retrieved the type (i.e., User or Bot) for each contributor from the
GitHub REST API’s users endpoint on 9 November 2021. Fig. 1.5 ranks the top 20
contributors to these 10 popular software projects in decreasing order of contributed
commits. Contributors that are responsible for at least 1% of all commits are high-
lighted. We classified the contributors into three categories (see Fig. 1.4): human
account, bot actor and bot account. Contributors belonging to the third category are

https:github.com/boto/boto3
https://github.com/mockito/mockito
https://github.com/rollup/rollup
https://github.com/kulshekhar/ts-jest
https://github.com/prettier/prettier
https://github.com/karma-runner/karma
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confirmed to be machine users through a manual inspection of their activities by two
co-authors of Golzadeh et al. (2022b).

Fig. 1.5 shows that two among the considered 10 repositories use only bot actors,
while eight repositories have between one and three bot accounts in their top 20
contributors. Also, more than half of these bots (12 out of 21) are bot accounts
(machine users). If we focus on the subset of contributors that made at least 1% of
all commits, the overwhelming majority of bot actors (8 out of 9) and bot accounts
(10 out of 12) belong to those contributors. On average, these bots are responsible
for nearly one fifth of all commits in these projects.

In summary, this preliminary evidence highlights that bots carry out a significant
amount of work and many of them belong to the most active committers to the
repository. Nevertheless, none of the bot accounts were identified as such by GitHub.

1.5. Thesis statement and goals

The previous section focussed only on bots that are involved in committing. It is
very likely that they are involved in many other activity types too given that col-
laborative software development on GitHub involves a wide range of activity types
such as opening issues, creating PRs, publishing releases, performing code reviews
and so on (Dabbish et al., 2012). As some activities can be effort-intensive, repetitive
and error-prone, they are likely to be automated using some or all of the automation
mechanisms presented in Section 1.2. The usage of bots in collaborative software
development helps to reduce developer’s workload, allowing them to focus on more
complex and mentally challenging tasks (Wessel et al., 2018).

Detecting the presence of bots in GitHub repositories is important for software
engineering researchers performing socio-technical studies and productivity analyses
of software development projects in GitHub. Disregarding the contributions of bots
or not treating their activities differently from humans could lead to biased, incorrect
and misleading conclusions during empirical analyses (Cassee et al., 2021; Dey et al.,
2020a,b; Zhang et al., 2022). Additionally, it is essential to correctly recognise the
contributions made by human contributors since their activities in collaborative soft-
ware development are used as a criterion for employers when hiring developers (Hauff
& Gousios, 2015), providing accredition (Hann et al., 2002), and to understand and
improve project development (Liao et al., 2020). As witnessed by initiatives such as
the CHAOSS Linux Foundation project15 and associated software development ana-
lytics tools such as GrimoireLab,16 it is important to assess the health of a software
community (Oriol et al., 2023) by considering all activities of each contributor.

Several bot identification approaches have been proposed previously (Dey et al.,
2020a; Golzadeh et al., 2021b, 2020; Abdellatif et al., 2022) as it can be challeng-
ing to distinguish bots from human contributors. However, a large amount of data
of different nature is required by some of these approaches to identify bots, making
them difficult to use at scale. Furthermore, most of these approaches detect bots by

15https://chaoss.community
16https://chaoss.github.io/grimoirelab/

https://chaoss.community
https://chaoss.github.io/grimoirelab/
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considering features based on a limited set of activity types, e.g., only commit related
activities Dey et al. (2020a) or only issue and PR related activities (Golzadeh et al.,
2021b). These observations led me to formulate the following thesis statement:

Thesis statement:
It is important to identify bots in GitHub repositories. Existing bot identifi-
cation approaches suffer from various limitations. We propose improved bot
identification approaches that overcome these limitations.

The following goals are proposed to address the thesis statement.

Goal 1: Improve existing bot identification approaches to overcome their lim-
itations.

Some bot identification approaches work at the level of individual GitHub repos-
itories. This might give rise to different predictions in different GitHub repositories
for the same contributor. An enhanced bot identification model could combine the
predictions made for a contributor on multiple repositories and provide a single pre-
diction of the contributor type.

Goal 1 will provide two improved bot identification models. The first model lever-
ages the predictions made by the approach of Golzadeh et al. (2021b) in all consid-
ered GitHub repositories to determine the contributor type. The second model is an
ensemble model that combines the predictions made by multiple bot identification
approaches.

Goal 2: Develop a new bot identification model that leverages a wide range of
activity types performed by contributors.

In GitHub, bots and human contributors perform many activity types. Existing
bot identification approaches depend on features based on a limited set of activity
types to detect bots in GitHub. This makes these approaches unable to detect a bot
that is involved only in specific activity types that are not considered by them. This
highlights the usefulness of an improved model that can identify bots in GitHub based
on a wider range of contributor activity types.

Goal 2 will have three outcomes. A curated dataset of manually labelled bots and
human contributors and their associated activity sequences in GitHub. A set of be-
havioural features based on their activity sequences that can statistically differentiate
bots from human contributors. A classification model to identify bots based on these
features.

Goal 3: Leverage the practical use of the activity-based bot identification model.
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There has been little research on how GitHub’s automation mechanisms are used
in the context of large software ecosystems composed of a large community of col-
laborating contributors. Conducting such studies helps to understand the roles and
dynamics of bots in large software ecosystems.

Goal 3 will use the activity-based bot identification model resulting from Goal 2,
and will have two contributions. First, it will reveal the differences in activity patterns
between bots and humans in a large software ecosystem, and also between GitHub
internal automation services, GitHub Apps and bot accounts. Second, we present an
efficient command-line based open-source bot identification tool that can be used at
scale to determine the contributor type of thousands of contributors per hour.

1.6. Thesis structure

This dissertation is comprised of eight chapters. The current chapter covered the
research context, thesis statement and thesis goals and contributions. Section 1.4 was
based on the following research publication that I co-authored.

• Golzadeh, M., Mens, T., Decan, A., Constantinou, E., & Chidambaram, N.
(2022b). Recognizing bot activity in collaborative software development. IEEE
Software, 39 (5), 56–61. DOI: 10.1109/MS.2022.3178601 (Golzadeh et al., 2022b).

The remainder of this dissertation is structured as follows. Chapter 2 provides the
background required to understand the concepts explored in this thesis. This chapter
provides an overview of GitHub’s automation practices and APIs, and illustrates their
use with some concrete examples.

Chapter 3 presents the related work. It provides an overview of research publica-
tions that report on empirical studies on bots in GitHub. The chapter discusses on
different categories and usages of bots, challenges with using bots, developers’ and
maintainers’ perspectives on using bots, guidelines for developing bots, and so on.
The chapter continues by presenting existing bot identification approaches in GitHub
and concludes with an overview of how these approaches have been used to identify
bots in various research studies.

Chapters 4 to 7 are based on peer-reviewed scientific articles. Each article has at
least one outcome in the form of a dataset, model and so on. Fig. 1.6 visually presents
for each chapter the article(s) covered in it, the contributions and the goal addressed
by them. Chapter 4 addresses Goal 1. It proposes two improved bot identifica-
tion models. First, it presents an ensemble classification model that combines the
prediction results provided by multiple bot identification approaches to identify bots
in GitHub. This model identifies bots by considering multiple activity types rather
than depending on a specific activity type. Second, the chapter presents another
bot identification model that improves the predictions made by BoDeGHa (Golzadeh
et al., 2021b), an existing bot identification model. For contributors active in multiple
GitHub repositories, the improved model combines the predictions made for them in
each of these repositories separately to give its final prediction on the contributor
type (bot or human). The improved models presented in this chapter provide a better

https://doi.org/10.1109/MS.2022.3178601
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precision and recall than the original approaches. The analyses and results presented
in this chapter are based on the following peer-reviewed publications:

• Golzadeh, M., Decan, A., & Chidambaram, N. (2022). On the accuracy of bot
detection techniques. In International Workshop on Bots in Software Engineer-
ing (BotSE). IEEE. DOI: 10.1145/3528228.3528406 (Golzadeh et al., 2022a).

• Chidambaram, N., Decan, A., & Golzadeh, M. (2022). Leveraging predictions
from multiple repositories to improve bot detection. In International Workshop
on Bots in Software Engineering (BotSE). IEEE. DOI: 10.1145/3528228.3528403
(Chidambaram et al., 2022).

Chapters 5 and 6 contribute to Goal 2 of this thesis. Chapter 5 provides a
dataset of bot and human activities in GitHub and introduces behavioural features
that can be used to differentiate bots from human contributors. First it presents
a curated ground-truth dataset of bot and human contributors. Then, it presents
an automated process to convert low-level contributor events to high-level activities.
Based on this process, it introduces a dataset of contributor activity sequences. Using
this dataset, this chapter statistically evaluates five behavioural features that can be
used to differentiate bots from humans in GitHub. The results reported in this chapter
are based on the following peer-reviewed publications:

• Chidambaram, N., Decan, A., & Mens, T. (2023). A dataset of bot and human
activities in GitHub. In International Conference on Mining Software Reposi-
tories (MSR) Data and Tool Showcase Track, pp. 465–469. IEEE/ACM. DOI:
10.1109/MSR59073.2023.00070 (Chidambaram et al., 2023a).

• Chidambaram, N., Decan, A., & Mens, T. (2023). Distinguishing bots from
human developers based on their GitHub activity types. In Seminar on Ad-
vanced Techniques & Tools for Software Evolution (SATToSE), Vol. 3483, pp.
31-39. CEUR Workshop Proceedings. Publication: https://ceur-ws.org/
Vol-3483/paper3.pdf (Chidambaram et al., 2023b).

Chapter 6 completesGoal 2 by providing a manually labelled ground-truth dataset
of bot and human contributors in GitHub, and using this dataset to train a machine
learning-based model that can identify bots in GitHub. First, the chapter extends
the ground-truth contributor dataset of Chapter 5 with new manually labelled con-
tributors. Second, it identifies and quantifies limitations of existing bot identification
approaches in terms of precision, recall, volume of data downloaded, execution time
and number of required API queries. Third, it explores a wider range of features
that can differentiate bots from human contributors. Finally, it details the procedure
followed to train and evaluate BIMBAS, a binary classification model to distinguish
bots from human contributors in GitHub. The contributions presented in this chapter
are based on the following peer-reviewed journal publication:

• Chidambaram, N., Decan, A., & Mens, T. (2024). A Bot Identification Model
and Tool Based on GitHub Activity Sequences. In Journal of Systems and Soft-
ware (JSS), Elsevier, vol. 221, ISSN: 0164-1212. DOI: 10.1016/j.jss.2024.112287
(Chidambaram et al., 2025).

https://doi.org/10.1145/3528228.3528406
https://doi.org/10.1145/3528228.3528403
https://doi.org/10.1109/MSR59073.2023.00070
https://ceur-ws.org/Vol-3483/paper3.pdf
https://ceur-ws.org/Vol-3483/paper3.pdf
https://doi.org/10.1016/j.jss.2024.112287
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Chapter 7 addresses Goal 3. First, it presents the usage of BIMBAS to perform
large-scale empirical studies in a large software ecosystem that has at least hundreds of
contributors and repositories. On the one hand we identify the differences in activity
patterns between bots and humans and on the other hand between different categories
of bots. Second, based on the BIMBAS classification model, this chapter presents and
evaluates the efficiency of RABBIT, a command-line bot identification tool that can
be used at scale to determine the contributor type of thousands of contributors per
hour. The results presented in this chapter are based on the following peer-reviewed
publications:

• Chidambaram, N., & Mens, T. (2025). Observing bots in the wild: A quanti-
tative analysis of a large open source ecosystem. In International Workshop on
Bots in Software Engineering (BotSE), IEEE (Chidambaram & Mens, 2025).

• Chidambaram, N., Decan, A., & Mens, T. (2024). A Bot Identification Model
and Tool Based on GitHub Activity Sequences. In Journal of Systems and Soft-
ware (JSS), Elsevier, vol. 221, ISSN: 0164-1212. DOI: 10.1016/j.jss.2024.112287
(Chidambaram et al., 2025).

• Chidambaram, N., Mens, T., & Decan, A. (2024). RABBIT: A tool for identi-
fying bot accounts based on their recent GitHub event history. In International
Conference on Mining Software Repositories (MSR) Data and Tool Showcase
Track. ACM. DOI: 10.1145/3643991.3644877 (Chidambaram et al., 2024).

Chapter 8 summarises all achieved research contributions and how they con-
tributed towards the thesis statement. The chapter also presents the limitations
and discussions of this dissertation. Finally, it discusses on the perspectives that can
keep this research going on.

https://doi.org/10.1016/j.jss.2024.112287
https://doi.org/10.1145/3643991.3644877


15

C
h4

: I
m

pr
ov

in
g 

ex
is

tin
g 

bo
t 

id
en

tifi
ca

tio
n 

ap
pr

oa
ch

es

O
n 

th
e 

ac
cu

ra
cy

 o
f b

ot
de

te
ct

io
n 

te
ch

ni
qu

es

Le
ve

ra
gi

ng
 p

re
di

ct
io

ns
 fr

om
m

ul
tip

le
 re

po
si

to
rie

s 
to

im
pr

ov
e 

bo
t d

et
ec

tio
n

C
h5

: D
iff

er
en

tia
tin

g 
bo

ts
 fr

om
 

hu
m

an
s 

ba
se

d 
on

 a
ct

iv
iti

es

A 
da

ta
se

t o
f b

ot
 a

nd
 h

um
an

ac
tiv

iti
es

 in
 G

itH
ub

D
is

tin
gu

is
hi

ng
 b

ot
s 

fro
m

hu
m

an
 d

ev
el

op
er

s 
ba

se
d 

on
th

ei
r G

itH
ub

 a
ct

iv
ity

 ty
pe

s

C
h6

: A
n 

ac
tiv

ity
-b

as
ed

 b
ot

 
id

en
tifi

ca
tio

n 
m

od
el

A 
bo

t i
de

nt
ifi

ca
tio

n 
m

od
el

 a
nd

 to
ol

ba
se

d 
on

 G
itH

ub
 a

ct
iv

ity
se

qu
en

ce
s

C
h7

: U
si

ng
 B

IM
BA

S 
in

 p
ra

ct
ic

e

O
bs

er
vi

ng
 b

ot
s 

in
 th

e 
w

ild
: A

qu
an

tit
at

iv
e 

an
al

ys
is

 o
f a

 la
rg

e
op

en
 s

ou
rc

e 
ec

os
ys

te
m

 

A 
bo

t i
de

nt
ifi

ca
tio

n 
m

od
el

 a
nd

to
ol

 b
as

ed
 o

n 
G

itH
ub

 a
ct

iv
ity

se
qu

en
ce

s

R
AB

BI
T:

 A
 to

ol
 fo

r i
de

nt
ify

in
g

bo
t a

cc
ou

nt
s 

ba
se

d 
on

 th
ei

r
re

ce
nt

 G
itH

ub
 e

ve
nt

 h
is

to
ry

Ac
tiv

ity
da

ta
se

t
G

ro
un

d-
tru

th
da

ta
se

t

In
iti

al
 s

et
 o

f b
ot

id
en

tifi
ca

tio
n 

fe
at

ur
es

Bo
t

id
en

tifi
ca

tio
n

fe
at

ur
es

En
sB
oD

W
oC

-P

B
IM
B
A
S

R
A
B
B
IT

G
oa

l 1
:

G
oa

l 2
:

G
oa

l 3
:

F
ig
ur
e
1.
6:

St
ru
ct
ur
e,

go
al
s
an

d
re
se
ar
ch

ou
tc
om

es
of

th
is

di
ss
er
ta
ti
on

.



16 Introduction



CHAPTER 2

Background

In collaborative software projects, developers and repository maintainers tend to use
various services for automating repetitive, effort-intensive and error-prone tasks. Au-
tomation services in GitHub perform their activities under the name of their bot
actors or bot accounts. As mentioned in Section 1.3, we collectively refer to them as
bots. Since activities performed by bots originate from different automation services,
it is required to understand the usage of these services in GitHub.

This chapter explains various automation mechanisms available in GitHub, that
are often used together in repositories. First, we discuss GitHub Actions workflows,
which are configurable automated processes used to perform tasks like building, test-
ing and deploying software. Second, we discuss GitHub’s internal automation services,
which are readily available tools provided by GitHub for all its repositories. Third,
we discuss GitHub Apps, which are tools that can be installed in GitHub organisa-
tions and repositories to automate tasks. Fourth, we discuss bot accounts, which are
personal user accounts handled by machine users for automating various tasks. Next,
we present GitHub’s external automation services, which are mechanisms that can
send information to external systems to perform some tasks. Finally, we explain the
GitHub APIs that allow developers, maintainers and automation services to inter-
act with GitHub, retrieve or modify GitHub related data, and manage and perform
activities in repositories.

17
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2.1. GitHub automation mechanisms

External automation service
e.g., Jenkins

Workflow

Bot account
e.g., Dask Bot

GitHub App
e.g., Renovate

GitHub
Repository

webhook

contains

installs

configures

grant permissions

github-actions[bot]

renovate[bot]

dependabot[bot]

dask-bot

Internal automation service
e.g., Dependabot

Figure 2.1: Automation mechanisms in GitHub.

Fig. 2.1 shows the automation mechanisms that are available in GitHub.
A GitHub repository can contain workflows. They are frequently used for Con-

tinuous Integration (CI) and Continuous Deployment (CD) tasks, but can automate
many other tasks as well. For example, a workflow can be configured to post a com-
ment in issue/PR or create/delete labels. It can be triggered by a commit, a PR,
at scheduled time and so on. Its activities are by default visible through GitHub UI
under the name of specific bot actor called github-actions[bot].

GitHub Apps are another automation mechanism. They can be installed in a
GitHub repository and configured to perform various tasks such as merging PRs,
opening issues, performing code reviews and so on. Apps can be installed in reposito-
ries or in an organisation account to perform its tasks. Similar to workflows, activities
performed by Apps are visible through the GitHub UI under the name of their corre-
sponding bot actors. For example, activities performed by Renovate1 App will look
like they are performed by its bot actor renovate[bot] in GitHub repositories.

GitHub also provides internal automation services that can be activated on repos-
itories. For example, Dependabot2 allows to check for dependency and security up-
dates, and the CodeQL3 analysis service allows to check for vulnerabilities and code

1https://github.com/apps/renovate
2https://github.com/dependabot
3https://codeql.github.com/

https://github.com/apps/renovate
https://github.com/dependabot
https://codeql.github.com/
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errors. The internal automation mechanisms can be configured in a GitHub repository
through the repository settings. The activities performed by the internal automation
mechanisms are visible through the GitHub API under the name of their respective
bot actors, for example dependabot[bot] in case of Dependabot and github-actions[bot]
in the case of CodeQL.

Activities in GitHub can also be automated through bot accounts which are present
in GitHub as personal user accounts. They require permission from a repository
maintainer to collaborate in that GitHub repository to perform its intended activities.
Their activities are visible in through the GitHub UI under their own personal user
account name. For example, activities performed by Dask Bot,4 a bot for automating
Dask organisation management tasks, will be visible in the GitHub API under its login
name dask-bot.

Finally, there are the external automation services, which provide notifications to
external systems through webhooks configured in the GitHub repository. Also, they
can trigger other automation mechanisms in response to specific activity types. For
example, Jenkins5 provides plugins to support building, deploying and automating
any project. It allows users to set up webhooks that trigger Jenkins every time a
change is pushed to GitHub. Similarly, SonarQube Cloud, a cloud-based static code
analysis service that performs continuous code quality and security checks, provides a
GitHub App6 that can be installed in GitHub repositories or organisations. External
automation services usually communicate back to GitHub through any of the other
automation mechanisms.

The next sections in this chapter provide details about each automation mecha-
nism in GitHub.

2.2. GitHub Actions workflows

Continuous integration, deployment and delivery (CI/CD) have become widespread
in collaborative software development (Fairbanks et al., 2023). GitHub introduced
the GitHub Actions in October 2018 to support CI/CD for its repositories, allowing
developers to automate their workflows directly within GitHub without the need for
any external CI/CD automation service like Travis7 or Jenkins. It enables to run
workflows for automating a wide variety of activities in a repository such as code
reviewing, verifying licence agreements, monitoring and updating dependencies and
fixing security vulnerabilities.

A GitHub Actions workflow is a configurable automated process to execute one
or more jobs (e.g., to build, test and deploy software) in a repository. The workflows
that need to be executed are written in YAML language and can be found as a .yml
file in the .github/workflows folder of the GitHub repository. A repository can contain
multiple workflow files that can perform different tasks. Each workflow has multiple

4https://github.com/dask-bot
5https://www.jenkins.io/solutions/github/
6https://github.com/marketplace/sonarcloud
7https://www.travis-ci.com/

https://github.com/dask-bot
https://www.jenkins.io/solutions/github/
https://github.com/marketplace/sonarcloud
https://www.travis-ci.com/
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components such as trigger, job, runner and step.
An example of a workflow file8 is given in Listing 2.1. This workflow is triggered

when a PR is created in the repository and posts the comment ’Thanks for reporting!’
under the PR. We will use this example to introduce the syntactic elements used in
a workflow.

Listing 2.1: Example of a workflow file.
1 on:
2 pull_request:
3
4 jobs:
5 comment:
6 runs−on: ubuntu−latest
7 steps:
8 − uses: actions/github−script@60a0d83039c74a4aee543508d2ffcb1c3799cdea
9 with:

10 script: |
11 github.rest.issues.createComment({
12 issue_number: context.issue.number,
13 owner: context.repo.owner,
14 repo: context.repo.repo,
15 body: ’Thanks for reporting!’
16 })

Trigger: A workflow can be triggered to run based on various events. For ex-
ample, the workflow in Listing 2.1 gets triggered when the event specified on line 2
happens in a repository i.e., opening a PR. Other possible triggers for a workflow can
be a release event (publishing a release), an issue event (opening an issue), a push
event (committing files), a scheduled time (e.g., at 6:00AM on every Monday) and so
on.

Job: Once a workflow is triggered, it executes the jobs specified in it (line 5). A
job (line 4) defines a set of one or more steps (line 7) that need to be sequentially
executed.

Runner: A runner is a machine with pre-installed software and tools that can be
used to execute a workflow. For example, line 6 specifies that the workflow needs to
be executed on the latest version of ubuntu OS. A workflow can also be executed on
other GitHub-hosted runners (e.g., windows-latest and macos-latest).

Step: A step is the smallest unit of work in a workflow. It can be an Action that
can be executed in a workflow. For example, line 8 specifies the repository hosting
the Action (actions/github-script) along with the version to be used (@60a0d. . . ). The
workflow first checks out the repository containing the Action (line 8), and then
executes the script (lines 11-15) that posts a comment ’Thanks for reporting’ under
the PR that was created.

Action: An Action is a reusable automation component that can perform a par-
ticular task (e.g., actions/github-script on line 8). The GitHub Marketplace9 provides

8https://github.com/tommens/calculator-cucumber/blob/master/.github/workflows/
comment.yml

9https://github.com/marketplace?type=actions

https://github.com/tommens/calculator-cucumber/blob/master/.github/workflows/comment.yml
https://github.com/tommens/calculator-cucumber/blob/master/.github/workflows/comment.yml
https://github.com/marketplace?type=actions
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many pre-written Actions (Wessel et al., 2023a) that can be used in a workflow to
avoid explicitly writing the commands that are commonly used.

By default, the activities carried out by GitHub Actions workflows are visible in
the GitHub UI under the name of a specific bot actor called github-actions[bot]. For
example, an activity done by the workflow provided in Listing 2.1 is given in Fig. 1.2
(in Section 1.3 on page 6), where github-actions[bot] posts the comment ’Thanks for
reporting’ as soon as the PR is created.

2.3. Internal automation services

GitHub provides a set of automation services that are available for all its repositories.
Dependabot is an internal automation service for keeping project dependencies

up-to-date, providing security updates, and alerting about vulnerabilities that affect
dependencies. Fig. 2.2 gives an example of a PR created by Dependabot in nodejs/n-
ode repository. This PR is created to update one of the project dependencies from
version 6.1.0 to version 7.0.1. It provides a compatibility score and adds labels too.

Figure 2.2: A PR created in nodejs/node repository by Dependabot under the name
of its bot actor dependabot[bot].

CodeQL is another internal automation service of GitHub. It identifies vulnerabil-
ities and errors in the code. The results will be shown as alerts in the Code scanning
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tab under the security settings of the repository. The service can be configured in
three ways. First, by using its default configuration that automatically identifies
the language, query suite to run and events that trigger scans. Second, by using
a customised version of CodeQL analysis by creating and editing a workflow file or
configuring third-party Actions. Third, by using the CodeQL CLI or an external CI
system and upload the results to GitHub. The service reports on the code scanning
severity such as Error, Warning or Note, and on security severity such as Critical, High,
Medium or Low.

Merge Queue is an internal automation service provided by GitHub to control
branch traffic, and automate PR merges into a busy branch and ensuring that the
branch is never broken by incompatible changes. When a PR is added to the merge
queue, it creates a temporary branch with the latest version of the base branch, merges
the PRs that are already in queue before merging the latest PR that is added to the
queue and executes CI services. Upon successful CI results, the new PR is added to
the merge queue. Through Merge Queue, a working system of the project is ensured
at every stage of development.

Activities performed by Merge Queue is visible in GitHub UI under the name of
its bot actor github-merge-queue[bot].

2.4. GitHub Apps

GitHub Apps are tools that extend GitHub’s functionality. They can be installed on
a user account or organisation and used in the GitHub repositories owned by that
account or organisation to perform various activities such as opening issues and PRs,
commenting on issues and PRs, creating or deleting tags and branches and so on.
Based on the events that happen in repositories, GitHub App can be triggered to
perform activities outside GitHub. For example, a GitHub App can post on Slack
when an issue is opened in the corresponding GitHub repository.10

GitHub Apps can be triggered in various ways such as manually, by workflows and
by specific events that are performed in repositories. For example Fig. 2.3 shows an
example of a PR in the electron/electron GitHub repository where Release Clerk11

App is triggered once the PR is merged. Release Clerk is a publicly available third-
party App (not distributed through GitHub Marketplace) that verifies if PRs have
release notes. Once the App finished its tasks, it posts a comment in the correspond-
ing PR which will appear through the GitHub UI as an activity performed by its
bot actor release-clerk[bot] (as indicated by the first red arrow in Fig. 2.3). Next,
trop is triggered, a private GitHub App managed by the Electron organisation for
backporting PRs (applying changes to a stable branch from the current branch), and
adding and removing tags in PRs. The activities done by trop GitHub App are visi-
ble through the GitHub UI under the name of its bot actor trop[bot] (as indicated by
the second red arrow in Fig. 2.3).

10https://github.com/integrations/slack
11https://github.com/apps/release-clerk

https://github.com/integrations/slack
https://github.com/apps/release-clerk
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Figure 2.3: Example of GitHub App commenting in PR.

2.5. Bot accounts

To access a GitHub repository, one should own a GitHub account, which can be
of three types. A personal account is required for everyone using GitHub. These
accounts can own an unlimited number of public and private repositories with an
unlimited number of collaborators and the activities that they perform on GitHub
will be attributed to their GitHub account. An organisation account serves as a
container for team members to collaborate on GitHub. Multiple contributors, each
having their own personal account, can collaborate on shared projects by joining the
same organisation account. A subset of these personal accounts can be given the role
of organisation owner, which allows those people to granularly manage access to the
organisation’s resources using sophisticated security and administrative features. An
enterprise account allows administrators to centrally manage policy and billing for
multiple organisations and enable innersourcing between the organisations.

Some GitHub personal accounts can be configured to be used by an automated
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(a) Bors - bot account (b) Bors activity in a PR

Figure 2.4: Bors GitHub personal account profile and an example of its activity in a
PR in rust-lang/rust repository.

actor to automate certain intended tasks in GitHub repositories. Such accounts are
called bot accounts. They can be regarded as machine users of artificial software
developers (Erlenhov et al., 2019) since they can perform all the activities that a
human can perform in GitHub through its personal account. Bot accounts are used
for automating a wide variety of tasks (Wessel et al., 2018) such as responding to
events (e.g., PR) and managing the flow of a project. Bot accounts can also interact
with, react to, or trigger other automation mechanisms such as workflows, Apps,
internal and external automation services.

Fig. 2.4a shows the profile of bors, a bot account in GitHub that is maintained
by the Rust language12 team. Rust is a systems programming language created by
the Mozilla team. The Rust-lang organisation in GitHub uses bors for various tasks
such as commenting on PRs, adding/removing labels of a PR, merging commits from
PRs, closing a PR and deleting its corresponding branch, closing issues associated
with PRs and so on. Fig. 2.4b gives an example of three successive tasks performed
by bors: It first merges PR commits to the master branch, then comments on the PR,
and finally updates the PR label.

Unlike Apps, GitHub does not recognise and label bot accounts as ‘bot’. So, a

12https://github.com/rust-lang

https://github.com/rust-lang
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user may not necessarily realise that a task is automated by a bot account. This
highlights the need for GitHub bot identification tools.

2.6. External automation services

Figure 2.5: A PR created by dependabot[bot] in repository tommens/calculator-
cucumber where the external system https://sonarcloud.io performs code quality
analysis and posts the report as comment using its sonarcloud[bot] bot actor corre-
sponding to SonarCloud GitHub App.

GitHub provides access to external automation services through webhooks. These
webhooks allow to notify external systems whenever certain events occur on GitHub.
A webhook can be created within a specific repository, organisation, or GitHub App.
The resources that a webhook can access depend on where it is installed. For example,

https://sonarcloud.io
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Fig. 2.5 shows an automatic PR created by Dependabot to update a dependency. The
creation of this PR triggers the execution of a GitHub App SonarQube Cloud that
checks for several code quality issues in the code, resulting in a PR comment with the
code quality report posted by its bot actor sonarcloud[bot]. It is the SonarQube Cloud
GitHub App that accesses the external cloud service https://sonarcloud.io that
performs this code quality analysis. After the quality checks are passed, a human user
tommens accepts and merges this PR and Dependabot deletes the branch it created
for this PR.

Based on some events performed in a repository such as a PR being opened or
an issue being created, webhooks can trigger GitHub automated workflows (Chan-
drasekara & Herath, 2021). Also, they can be used to send notification such as to Slack
whenever an event (e.g., new commit, comment and a PR is created) is performed in
GitHub, or updating some external issue tracker (e.g., Jira).

2.7. GitHub REST API

API is an acronym for Application Programming Interface. It provides a connection
between computers, computer programs or pieces of software to interact with each
other. GitHub offers many APIs, but in this thesis, we rely only on its REST API.13
It allows users and automation services to interact with GitHub artifacts (pertaining
to repositories, organisations, users and so on) such as issues, PRs, tags, branches
and so on. Further, it can be used to automate various activities such as creating
or deleting repositories, creating or deleting tags, creating or deleting branches, com-
mitting files, publishing releases and so on. Interaction with REST API can be made
using GitHub’s CLI, curl (a command line tool for transferring data), the Octokit
official clients for the GitHub API, and other third-party libraries. It provides data
in a pre-determined structure. This section provides details about the GitHubREST
API.

The GitHub REST API has many targeted endpoints that can be used to send
or receive information regarding functionalities such as users (get information about
personal accounts, Apps and internal automation services), issues (interact with is-
sues), pulls (interact with PRs), repositories (interact with repositories), events (get
public events performed by a user, public events performed in a repository and public
events performed in an organisation) and so on.13

For example, to get the first 30 followers of a GitHub user account, the following
GitHub REST API query to its users endpoint needs to be made: https://api.
github.com/users/<username>/followers. Listing 2.2 shows the information re-
trieved through this query regarding the fist 30 followers of natarajan-chidambaram.14

If one would like to obtain the first three followers of the first two followers of
natarajan-chidambaram, first a script needs to be written to parse the JSON result of
Listing 2.2 and to extract the value stored in the “login” key for the first two followers.
Then, two more queries need to be made: https://api.github.com/users/human1/

13https://docs.github.com/en/rest
14Usernames are pseudo-anonymised to comply to GDPR guidelines.

https://sonarcloud.io
https://api.github.com/users/<username>/followers
https://api.github.com/users/<username>/followers
https://api.github.com/users/human1/followers
https://api.github.com/users/human1/followers
https://docs.github.com/en/rest
https://api.github.com/users/human1/followers
https://api.github.com/users/human1/followers
https://api.github.com/users/human1/followers
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followers and https://api.github.com/users/human2/followers. Overall, it re-
quires three API queries and some additional programming to obtain the required
information about the followers.

Listing 2.2: Output provided by the REST API for the query to fetch the first 30
followers of natarajan-chidambaram’s GitHub account.

1 [
2 {
3 "login": "human1",
4 "id": 12345678,
5 "node_id": "ABcd123=",
6 "url": "https://api.github.com/users/human1",
7 "html_url": "https://github.com/human1",
8 "followers_url": "https://api.github.com/users/human1/followers",
9 .

10 .
11 .
12 "type": "User",
13 "site_admin": false
14 },
15 {
16 "login": "human2",
17 "id": 23456789,
18 "node_id": "PQRst123=",
19 "url": "https://api.github.com/users/human2",
20 "html_url": "https://github.com/human2",
21 "followers_url": "https://api.github.com/users/human2/followers",
22 .
23 .
24 .
25 "type": "User",
26 "site_admin": false
27 },
28 .
29 .
30 .
31 ]

Listing 2.3: Using the GitHub REST API to create a new issue in a repository.

1 c u r l −X POST \
2 −H " Au t h o r i z a t i o n : Bea re r <token >" \
3 −H "Accept : a p p l i c a t i o n /vnd . g i t hub+j s o n " \
4 h t t p s : // ap i . g i t hub . com/ r epo s/<repo_owner>/<repo_name>/ i s s u e s \
5 −d ’{" t i t l e " : " t i t l e " , "body " : " d e s c r i p t i o n " , " l a b e l s " : [ " l 1 " ] } ’

Apart from retrieving data, the REST API can also be used to post or update data
on GitHub. For example, one can manage issues, PRs, assignees, labels, branches,
discussions, and tags. Listing 2.3 provides an example for creating an issue in a
repository using the GitHub REST API through a terminal.15 Line 1 conveys that
an HTTP POST method is used to send data to GitHub. In line 2, the user has to
enter their access token, and in line 4, the repository owner and repository name has

15https://docs.github.com/en/rest/issues/issues?#create-an-issue

https://api.github.com/users/human1/followers
https://api.github.com/users/human1/followers
https://api.github.com/users/human1/followers
https://api.github.com/users/human1/followers
https://api.github.com/users/human2/followers
https://docs.github.com/en/rest/issues/issues?#create-an-issue
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to be entered. Line 5 is the data (in the format of key-value pair) corresponding to
the issue that is to be created, where “title” (corresponds to the title of the issue) is
the only mandatory parameter.

Events endpoint of the GitHub REST API:

Figure 2.6: JSON output of a PushEvent obtained from the REST API events end-
point for GitHub contributor natarajan-chidambaram.

In this thesis, we predominantly use the events endpoint of the REST API to
query the events performed by contributors in GitHub. This endpoint can be ac-
cessed using the query: https://api.github.com/users/<username>/events, and
the following query can be used for accessing the events performed in a reposi-
tory: https://api.github.com/repos/<repo_ownner>/<repo_name>/events. Ev-
ery event has these common fields: unique event “id”, the “type” field that provides the
event type that is being performed, the “actor” field that provides details regarding
the contributor that performed the event, the “repo” field that provides information
regarding the repository in which the event is performed, and the “payload” field that
provides additional details regarding the event. In total, the events endpoint reports

https://api.github.com/users/<username>/events
https://api.github.com/repos/<repo_ownner>/<repo_name>/events
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17 event types16 such as IssuesEvent when a contributor opens/closes/reopens an issue
in a repository, PullRequestEvent when a contributor opens/closes/reopens a PR in a
repository, IssueCommentEvent when a contributor posts a comment under an issue
or a PR, ReleaseEvent when a contributor creates a release in a repository, and so on.

Figure 2.7: JSON output of a CreateEvent obtained from the REST API events
endpoint for natarajan-chidambaram.

Fig. 2.6 provides the output returned by the events endpoint for a PushEvent and
Fig. 2.7 represents a CreateEvent. From the “actor” field, we can observe that both
events are performed by the same contributor with unique “id” 48755692 and unique
“login” name natarajan-chidambaram. From the “repo” field, we can observe that both
events are performed in GitHub repository with unique “id” 721712501 and unique
repository “name” natarajan-chidambaram/rabbit. However, the “payload” field has
different information as it depend on the event type. Fig. 2.6 provides the size of
the commit being pushed, the hash values before and after pushing the commit,
and commit details such as its author and commit message. On the other hand,
the “payload” field in Fig. 2.7 gives details regarding the tag that is created in the
repository, its “ref” name, description and so on.

2.8. Summary

GitHub provides various automation mechanisms that developers and practitioners
can use to automate their repetitive, error-prone and effort-intensive tasks. Automa-

16https://docs.github.com/en/rest/using-the-rest-api/github-event-types?apiVersion=
2022-11-28

https://docs.github.com/en/rest/using-the-rest-api/github-event-types?apiVersion=2022-11-28
https://docs.github.com/en/rest/using-the-rest-api/github-event-types?apiVersion=2022-11-28
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tion mechanisms can be triggered by a wide variety of events. The choice of automa-
tion mechanism depends on the task that needs to be automated. GitHub workflows
are predominantly used for performing CI/CD tasks. Internal automation services are
often used for checking dependency and security vulnerabilities in projects, Apps can
be installed and bot accounts can be granted permission in repositories for performing
various activities. Finally, external automation services perform tasks in an external
system based on the events happening in repositories. Automation mechanisms can
interact with repositories using the GitHub API. Activities performed by automation
mechanisms will be visible through the GitHub UI under the name of their bot actors
or bot accounts which are collectively called as bots.

This thesis specifically focuses on identifying the difference in activities between
bots and humans. It could also be of interest to study the behaviour and usage of
automation mechanisms such as GitHub workflows and Actions, but it is out the scope
for the current thesis as it is being studied by other researchers at our lab (Decan
et al., 2022; Rostami Mazrae et al., 2023; Decan et al., 2023; Onsori Delicheh et al.,
2024).



CHAPTER 3

State of the art

Software developers and maintainers in GitHub repositories use bots to assist them
in performing error-prone and repetitive activities. As seen in Section 1.4, bots are
prevalent in GitHub repositories. Their usage and behaviour may differ depending on
the activities they automate, the environment they operate in and so on. Many studies
regarding bots have been conducted in the past. This chapter provides an overview of
the research on using bots in collaborative software development. Section 3.1 reports
on existing empirical studies to categorise bots in GitHub, identifying challenges in
using them, and analysing their impact in software development. Section 3.2 provides
an overview of bot identification tools and approaches that researchers have created
and used for identifying bots in GitHub.
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3.1. Studies on bots

This section provides an overview of existing studies related to bots. Section 3.1.1
outlines different categories of bots, Section 3.1.2 highlights the challenges faced with
bots and their impact in software projects, and Section 3.1.3 provides an overview of
various empirical studies involving bots that were conducted in the past.

3.1.1 Categorising bots

Erlenhov et al. (2020) categorised bots based on three personas namely autonomous
bots, chat interfaces and smart bots. They carried out a qualitative study focussing
on the definition of what is a bot, why developers use them and what developers
struggle with when using bots. The findings of this study were reported based on
interviews with 21 developers and surveys with 111 developers.

Bots with an autonomous persona work on their own without requiring much
human intervention to complete certain tasks that humans would do. These bots could
improve productivity of developers. Bots with a chat persona (commonly referred to
as chatbots) communicate with developers through a natural language interface (voice
or chat). These bots usually provide an interface to an existing system, and do not
constitute a full-fledged system by themselves. Such bots use existing communication
tools (e.g., Slack and Discord) that human developers use for status updates and
synchronisation on work tasks. Bots with a smart persona are adaptive at executing
certain tasks. These bots are often strongly associated with machine learning and
advanced program analysis techniques (e.g., DeepCode AI1 and GitHub Copilot.2)

Wyrich & Bogner (2019) proposed a smart and autonomous bot that integrates
into the team like a human developer via the existing version control platform. The
bot automatically performs refactorings and presents the changes to a developer for
asynchronous review via PRs enabling the developers to review it anytime.

Lambiase et al. (2024) conducted a multivocal literature review using 79 formal
literature (e.g., published in journals and conferences) and 28 grey literature (e.g.,
blog posts and white papers) to provide a taxonomy for categorising bots. For for-
mal literature, they relied on Scopus,3 IEEE Xplore4 and ACM digital library,5 and
for grey literature, they used the Google search engine. They identified four main
categories. Software product bots perform automatic operations on source code or
related artifacts and fall under the following five sub-categories: development, refac-
toring, testing, configuration and CI/CD. Software process bots are used to improve
and enhance communication, collaboration and management activities and belong to
four sub-categories: team, communication and collaboration, task, and code review.
Knowledge bots store, share and manage information and knowledge about software
projects and belong to documentation and metrics sub categories. Emergent bots are

1https://snyk.io/platform/deepcode-ai/
2https://github.com/features/copilot
3https://www.scopus.com/home.uri
4https://ieeexplore.ieee.org/Xplore/home.jsp
5https://dl.acm.org/

https://snyk.io/platform/deepcode-ai/
https://github.com/features/copilot
https://www.scopus.com/home.uri
https://ieeexplore.ieee.org/Xplore/home.jsp
https://dl.acm.org/
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emerging bots that are still in an embryonic stage and belong to three sub-categories:
digital twin bots, orchestration bots and technology transfer bots.

Ghorbani et al. (2023) qualitatively analysed the characteristics affecting developer
preferences for interacting with bots in PRs. They formulated 13 questions to collect
data based on contributor experiences of using bots in their respective communities.
By interviewing 12 participants from four different open-source communities they
identified seven themes on how software developers perceive software bots: attitude,
autonomy, persona, task, feelings, project norm, and role. Among these, they found
autonomy and persona to exert more influence in shaping developer perception of bots.
To further study this influence of autonomy and persona, they conducted surveys
among 56 participants and recommended that developers should have options to scale
the autonomy of bots, select and change bot personas, and improve project-specific
feedback on bot behaviour and developer preferences.

Wessel et al. (2018) analysed the usage of 48 different bots in 93 GitHub projects
and categorised bots into 12 different categories based on the tasks they perform
in software projects. Those tasks include reviewing PRs, running automated tests,
building projects, analysing and updating dependencies, and creating issues. To anal-
yse the changes in PR characteristics before and after bot adoption, they looked into
PRs belonging to 44 projects for a duration of six months before and six months after
bot adoption. They found statistically significant differences in 44 GitHub projects
in terms of number of commits, number of changed files, number of comments and so
on before and after bot adoption.

Following this, Wang et al. (2022) identified 201 bots in 613 GitHub projects and
grouped them into six categories based on their tasks: CI assistance, issue and PR
management, code review assistance, dependency and security analysis, developer and
user community support, and documentation generation. They identified that 60%
of the projects that they considered use at least one bot to automate routine tasks
and 74 out of 201 bots belong to more than one category.

3.1.2 Challenges and impact of bots

Based on 21 interviews with software developers, (Erlenhov et al., 2020) reported the
challenges faced by developers in using bots. They categorised the identified challenges
into three groups: interruption and noise, trust, and usability. Bots that create Inter-
ruption and noise are the ones that overload human communication channels (e.g.,
Slack) with too much information or posting so frequently that human developers
stop paying attention. Bots that cause trust issues to developers are the ones that
produce too many broken builds, failed deployments, or provide irrelevant warnings.
Usability of a bot becomes a challenge when developer has to remember what exactly
to type to trigger which functionality.

Saadat et al. (2021) examined the event sequences of repositories with and with-
out bots using a contrast motif discovery method to detect subsequences that are
more prevalent in one set of event sequences versus the other. They concluded that
teams using bots are more likely to intersperse comments throughout their coding
activities, while not actually being more prolific commenters. Also, they suggested
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that it is crucial to further study the performance of teams that combine human and
bot contributors to ensure that continuous communication compensates for the loss
of situation awareness and does not negatively impact the performance of teams.

To better understand the impact of bots in GitHub, Wessel et al. (2021) inter-
viewed 21 practitioners and identified 25 challenges that development bots bring to
software projects, categorised into three categories: interaction challenges (e.g., in-
timidating newcomers, providing non-comprehensive feedback and impersonating de-
velopers), adoption challenges (e.g., burden to set up configuration files, limited con-
figurations and handling technical failures) and development challenges (e.g., building
multitasking bots, restricted bot actions by GitHub API, and hosting and deploying
bots). Also, the authors mention some annoying bot behaviours which can be per-
ceived as noise including verbosity, too many actions, and unrequested or undesirable
tasks on PRs.

Lambiase et al. (2024) extended this study by conducting a multivocal litera-
ture review (as mentioned in Section 3.1.1) and identified more sub-categories on
challenges of bots for software engineering purposes. To interaction challenges they
added long response latency, lack of guidelines for usability of bots, unsatisfied expec-
tations, natural language understanding and processing (e.g., incorrect interpretation,
unexpected bias such as text limited to a specific culture and background of bot de-
velopers), and uncanny valley which is the phenomenon where a software program
behaving like a human being evokes a sense of unease for the person interacting with
it. In adoption challenges they included lack of trust in recommendations and AI-
powered bots, and terms of service. To development challenges they added difficulty
in identifying the correct bot development framework (e.g., Google Dialogflow, Ama-
zon Lex, Microsoft Bot Framework), lack of tests and difficulty in monitoring the
impact of maintenance activities, difficulty in designing architecture for such complex
systems, difficulty in integrating different technologies, and difficulty in effectively
training AI models. Further, they suggested possible best practices for overcoming
these challenges and divided them into two categories based on their scope. They
are development and design (e.g., follow a modular architecture, make bots adaptive
and able to learn over time using AI, and adopt a specific lifecycle process for bots),
and interaction and adoption (e.g., allow developers to edit bot configuration easily,
provide bots with personality, and enforce transparency in bot actions and outputs).

Wessel et al. (2023b) surveyed 205 open source contributors and 23 maintainers
on challenges of using and interacting with bots, and interviewed 21 practitioners
who are experienced with bots, including project maintainers, contributors, and bot
developers. According to the authors, intelligence and adaptability are not yet widely
present in bots that work on GitHub, although they recurrently appear in the liter-
ature as desired bot characteristics. So, based on their analysis on the developers’
and maintainers’ needs and expectations from a bot, they proposed seven guidelines
for both bot developers and tool builders, which are: (1) provide clear, concise, and
well-organised information, (2) focus on an appropriate way to show information, (3)
provide actionable changes to developers, (4) avoid overly humanised bot messages,
(5) make bots’ purpose clear, (6) provide options to configure bot notification, and (7)
include documentation of alternative installation settings to accommodate different
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types of users. As noise emerged as a central interaction challenge, they investigated
how to overcome it and proposed two strategies: (1) create a mediator bot that or-
ganises existing bot information in a PR, and (2) create a separate interface for bot
interaction in PRs. In a follow-up work, Wessel et al. (2022a) interviewed 32 prac-
titioners experienced with OSS bots, presented a fictional story of a mediator bot
capable of better supporting developers and found 22 design strategies for creating
such a bot. The aim of such a mediator bot was to summarise and customise other
bots’ actions to reduce information overload incurred by their use. They grouped
the identified design strategies into four categories for developing such a mediator
bot and one category for modifying GitHub’s interface: (a) information management
(e.g., summarisation of bot comments); (b) newcomer assistance (e.g., sending them
a welcoming message); (c) notification management (e.g., schedule bot notifications);
(d) spam and failure management (e.g., bug reports); and (e) platform support (e.g.,
separating bot comments). Ribeiro et al. (2022) followed the above-mentioned design
strategies and developed a prototype of mediator bot called FunnelBot. They qual-
itatively evaluated the performance of FunnelBot among 25 participants and found
that it is appropriate, clear, easy to understand, useful, and organises information
very well compared to that of using multiple bots.

3.1.3 Empirical studies

In the past, there have been many empirical studies on bots (Rebai et al., 2019;
Wessel et al., 2019; Romero et al., 2020; Dey et al., 2020c; Wyrich et al., 2021; Zhang
et al., 2022; Wessel et al., 2022b; Kazi Amit et al., 2023; Khatoonabadi et al., 2023;
Mohayeji et al., 2023; Fischer et al., 2023; Murali et al., 2024). In this section, we
focus on recent studies that have been conducted.

Wyrich et al. (2021) analysed the PRs created and commented by humans and
bots to understand the difference in priority given to PRs created by bots and humans.
They found that PRs created by humans received faster response and 73% of them
were merged. PRs created by bots took significantly more time to receive a response
and only 37% of them were merged, even though they contained fewer changes on
average than PRs of humans.

On the other hand, Kazi Amit et al. (2023) studied the time-to-first-response for
PRs by analysing 111,094 closed PRs from ten popular OSS projects on GitHub. To
understand the properties of a PR, the authors identified 24 features belonging to three
dimensions namely PR (e.g., length of PR description, tag exists?, and #commits in
PR at opening time), project (e.g., # active core team members in the last three
months, #PRs, and #executable lines of code), and developer (e.g., #previous PRs,
#PR reviews in a project, and core member?). They found around 80% of PRs to get
their universal first response within a day, 40% of PRs that received their first response
on same day of PR creation date within 10 minutes, of which 70% were by bots (CLA
bots, review supporting bots and reviewable services). In summary, they found that
bots frequently generate the first response in PRs, and there is a significant time
difference between the first response provided by a bot and first response provided by
a human in a PR.
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Zhang et al. (2022) quantitatively studied the factors influencing PR latency and
the change in these factors with a change in context (e.g., time, project and developer).
They identified 47 features that influence PR latency. They classified these features
into developer characteristics (e.g., Is this the developer’s first PR? and Do contributor
and integrator have the same affiliation? ), project characteristics (e.g., team size and
project age), and PR characteristics (e.g., whether it is bug fix, and the number of
PR comments). As they found a widespread usage of bots in PRs, they conducted
a case study to identify the impact of bots on PR latency. Executing an existing
bot identification tool to identify bots in 3.3M+ PRs belonging to 11K+ GitHub
projects obtained from GHTorrent, they observed that more than one out of three
PR comments were made by bots. Further, they found that the presence of comments
posted by humans were more important than those of bots in explaining PR latency.

Wessel et al. (2022b) qualitatively analysed the unexpected impacts of adopting a
code review bot in 1,194 software projects and interviewed 12 practitioners including
open source maintainers and contributors. Through analysis, the authors reported
that the number of monthly merged PRs increased after the introduction of a code
review bot, the number of monthly non-merged PRs decreased after the introduction
of a code review bot, and communication among developers decreased.

On the other hand, Khatoonabadi et al. (2023) qualitatively studied the potential
benefits and drawbacks of using stale bot for pull-based development. Stale bot is a
GitHub Action6 that automatically warns and closes issues and PRs that have been
inactive for a certain period of time. By observing PRs for a duration of two years
(1 year before and 1 year after adopting stale bot) in 20 large and popular open-
source projects, they concluded that stale bot can help projects deal with a backlog
of unresolved PRs and also improve the PR review process, but may negatively affect
project newcomers.

Mohayeji et al. (2023) carried out a fine-grained analysis on the lifecycle of vulner-
abilities to manifest how they are dealt with in the presence of Dependabot (GitHub’s
internal automation service for checking dependencies, presented in Section 2.3). On
one hand, they found many projects to use Dependabot to fix vulnerable dependencies
and security updates that are merged after several days. On the other hand, when
developers do not merge a security update, they usually address the identified vul-
nerability manually. This approach, however, often takes up to several months which
in turn could expose the projects to security issues.

To further study the time for merging these security updates Fischer et al. (2023)
performed time-series analysis on security-altering commits in GitHub. They show
that while all of GitHub’s security interventions have a significant positive effect on
security, they differ greatly in their effect size. Also, they studied the design of each
intervention to identify the building blocks that worked well and those that did not.

Murali et al. (2024) studied diversity in issue assignment between bot and human
assignors. By analysing 127K issues that have assignees in VSCode, Tensorflow and
Kubernetes projects, they found that bots are more biased than humans in a majority
of cases, and in some cases humans are extremely biased in issue assignments. Also,

6https://github.com/actions/stale

https://github.com/actions/stale
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they conclude that it is possible to design unbiased issue assignment bots as they
found bots in Kubernetes to be highly competitive with humans in terms of diversity
and outperform humans on many occasions.

3.2. Bot identification in GitHub

The previous section reported on studies that were conducted based on the usage,
behaviour and impact of bots in GitHub repositories. To perform such studies, bots
need to be identified from a set of contributors chosen for observation. Section 3.2.1
provides various bot identification heuristics, tools, and models that researchers have
proposed. Section 3.2.2 provides an overview of studies that relied on bot identification
approaches.

3.2.1 Approaches to identify bots

The most naive approach is a Name-Based Heuristic (NBH) (e.g., sre-bot, arduinobot,
ezrobot). It is based on simple regular expressions to detect whether a contributor
name contains specific substrings (e.g., “bot”, “automate”, or “robot”). This heuristic
has been used with different variations to identify bots in various studies (Murali
et al., 2024; Orrei et al., 2023; Schueller et al., 2022; Dey et al., 2020a)

Dey et al. (2020a) developed BIMAN, an ensemble model that combines three
different approaches to recognise bots in commits. The first approach is a variation
of NBH, called BIN (for Bot Identification by Name) that uses a regular expression
that checks for the “bot” substring in contributor name preceded and/or followed
by non-alphabetic characters (e.g., sre-bot, github-actions[bot]). The second model
called BIM (for Bot Identification by commit Message) relies on similarity in commit
messages, based on the assumption that the textual variation in commit messages is
lower for bots than for humans. The third model called BICA (for Bot Identification
by Commit Association) is a Random Forest binary classifier trained on six features
related to the modifications made to files in commits: (i) number of files changed by
commit author across commits; (ii) number of unique file extensions in all commits;
(iii) standard deviation of number of files per commit; (iv) mean number of files per
commit; (v) number of unique projects commits have been associated with; and (vi)
median number of projects commits have been associated with. To train BIM and
BICA, they used a dataset consisting of 26,300 commit authors, of which 13,150 were
bot authors and 13,150 were human authors. To create such a dataset, they used
BIN, then manually verified the author IDs, description, commits messages and PR
comments whenever available to correct their type. Evaluating BIMAN after training
resulted in an AUC-ROC score of 0.90.

Golzadeh et al. (2021b) developed BoDeGHa, a model and associated open-source
tool that uses a Random Forest binary classifier to identify bots that are involved
in commenting issues and PRs. BoDeGHa takes as input a repository name and a
GitHub API key to provide a prediction for each contributor that posted comments
under issue or PR in that repository. For each contributor, BoDeGHa retrieves their
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last 100 issue and PR comments and computes five features: (i) the string distance
between comments (using a combination of Levenshtein and Jaccard distance), (ii) the
number of comment patterns (sets of very similar comments), (iii) the Gini inequality
between comment patterns, (iv) the total number of comments, and (v) the number
of empty comments. They created a manually labelled ground-truth dataset of 5,000
GitHub contributors of which 527 were bots. They used 60% of contributors for
training (316 bots and 2,684 humans) and the remaining 40% (211 bots and 1,789
humans) for testing the model. Evaluating the trained model on test data resulted in
precision, recall and F1-score of 0.98 each.

In a follow-up work, they developed BoDeGiC (Golzadeh et al., 2020) that uses a
Random Forest binary classification model to identify bots that are involved in git
commits. BoDeGiC takes the same arguments as inputs but uses an approach that
is similar to the one of BoDeGHa. The former is applied to commit messages rather
than issues and PR comments. For each contributor, BoDeGiC retrieves their last 100
commit messages and computes the latter four features that were used in BoDeGHa
(i.e., it does not include string distance between commit messages as a feature). To
train the classification model, they relied on the dataset of git commits that was
used by Dey et al. (2020a). They obtained a dataset that consists of 311,622 git
commit messages from 6,922 contributors (3,380 bots and 3,542 humans). Evaluating
BoDeGiC on the test set consisting 40% of contributors (1,352 bots and 1,417 humans)
resulted in precision, recall and F1-score of 0.80 each.

Abdellatif et al. (2022) developed BotHunter, a state-of-the-art bot identification
approach. It relies on a Python script that executes a Random Forest binary classi-
fication model to identify bots in GitHub. BotHunter takes as input either the login
name of a contributor or the name of a repository for which it obtains the login
name of contributors (through GitHub REST API’s contributors endpoint) who
made at least one commit to the repository. Then for each contributor, it queries
the GitHub API to retrieve their data. To identify bots, BotHunter uses 19 features,
three of which are in common with BoDeGHa and BIMAN (similarity in text between
issue/PR comment, commit message and comments that precede bot events in issues
and PRs), six are based on profile information (account login, name, tag and bio,
number of followers and number of followings) and 10 are based on account activity
(total number of repositories, issues, PRs and commit events, unique number of repos-
itories, issues, PRs and commit events, median events per day and median response
time to the earliest event in issue or PR). Among the considered features, the top
five most important features were account name, account login, number of followers,
issue/PR comments similarity, and median events per day. To train and evaluate the
classification model, they combined the dataset used for BIMAN and BoDeGHa and
got a set of 669 bots and 4,428 human contributors in GitHub. Evaluating the trained
classification model resulted in a precision of 0.957, recall of 0.894 and F1-score of
0.924.

In another work, Golzadeh et al. (2021a) proposed a multinomial Naive Bayes
classification model that can provide the probability that a comment is created by a
bot. It works at the level of individual comment in issues and PRs. It uses TF-IDF,
an NLP technique, where a feature vector is formed for each comment. To train the



39

classification model, they relied on the dataset published in earlier work (Golzadeh
et al., 2021b) from which they took a subset of 9,641 comments created by 519 bots
and 9,641 comments created by 4,090 humans. Evaluating this model on the test set
of 9,515 comments, they achieved a precision, recall and F1-score of 0.882 each.

Cassee et al. (2021) developed three comment-level classification models for identi-
fying bots through their issues and PR comments. The first model was a Naive Bayes
classifier that uses TF-IDF to classify comments based on its text. The second model
was a Support Vector Machines binary classifier that uses average Jaccard distance
and normalised Levenshtein distance between comments to capture templated com-
ments. The third model was a Random Forest binary classifier that uses four features
regarding the activity of the contributor that authored the comment: (i) number of
repositories created, (ii) number of gists created, (iii) number of users followed by
the contributor, and (iv) number of users that follow the contributor. To train these
models they relied on the contributor names provided by Golzadeh et al. (2021b),
under-sampled the number of human contributors to balance the dataset, and used
the GitHub REST API to gather 8,528 comments from 393 bots and 8,607 comments
from 406 human contributors. As in other studies, they evaluated their model on test
data and computed the precision, recall and F1-score. The first model achieved a
performance of 0.882 each, the second model achieved 0.918 each and the third model
achieved 0.962 for each metric.

3.2.2 Studies that relied on bot identification approaches

Bot identification has been used by various researchers for different purposes such as
to treat bot activities differently from those of humans, to remove bot activities from
the study and so on. This section reports on how various bot identification approaches
have been used in the research literature.

As explained in Section 2.3 and Section 2.4, GitHub tags the bot actors (on behalf
of GitHub Apps and internal automation services) as ‘bot’ in the GitHub UI. As
presented in Section 1.3, the “type” field in users endpoint for a bot actor will have
“Bot” as its value and GitHub adds a specific string ‘[bot]’ at the end of the bot
actor’s name (e.g., renovate[bot]) GitHub prevents regular user login names to use
the characters ‘[’ and ‘]’. Some studies (Wyrich et al., 2021; Moharil et al., 2022;
Orrei et al., 2023; Khatoonabadi et al., 2024) included this approach to identify bot
contributors.

While NBH has been used in some studies (Murali et al., 2024; Orrei et al., 2023;
Schueller et al., 2022; Saadat et al., 2021; Khatoonabadi et al., 2024), with the latter
two performing a manual inspection on the results, more sophisticated variations of
this approach have been used to identify bot contributors. Wyrich et al. (2021) used
‘%bot’, ‘%robot’, ‘%-bot-%’, ‘%-robot-%’, ‘bot-%’ and ‘robot-%’ to identify bots. Lin
et al. (2024) considered ‘bot’ suffix in contributor names, whereas Fang et al. (2023)
used ‘-bot’ or ‘-robot’ as suffix of the contributor names to identify bots. To develop
the BIN model of BIMAN, Dey et al. (2020a) relied on NBH to check for ‘bot’ preceded
or followed by non-alphabetic characters. Abdellatif et al. (2022) included NBH as a
feature in their model to identify bot contributors by relying on presence of substring
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‘bot’ or ‘automate’ in the login name, bio or description of the contributor. For the
contributors that could not be associated to a GitHub account, Schueller et al. (2022)
extracted their email ID and filtered it based on a suffix that is equal to ‘bot’, ‘ghbot’,
‘bors’ and ‘travis’.

Some studies make use of existing ground-truth datasets that were published to
identify bots in GitHub. Many studies (Lin et al., 2024; Schueller et al., 2022; Orrei
et al., 2023) relied on the pre-defined list of bots published by Golzadeh et al. (2021b),
whereas as Fang et al. (2023) relied on the bot dataset used by Dey et al. (2020a),
and Khatoonabadi et al. (2024) used bots listed by Golzadeh et al. (2021b), Wang
et al. (2022) and Abdellatif et al. (2022).

Also, the bot identification approaches presented in Section 3.2.1 have been used
by some studies to identify bot contributors. BoDeGHa was used by Bock et al. (2023)
on contributors that made at least 2,000 issue/PR comments, and Moharil et al. (2022)
executed BoDeGHa on contributors that made at least one issue comment. Further,
Zhang et al. (2023) used BoDeGHa with a small modification to predict the type of
contributor by accepting PR comments provided by the user rather than extracting
the data from the GitHub API.

Finally, Schueller et al. (2022) and Fang et al. (2023) ordered the contributors
based on their number of commits and manually checked the top 100 contributors to
identify more bots in their collection of considered bots.



CHAPTER 4

Improving existing bot identification
approaches

This chapter addresses Goal 1 of this thesis. We leverage the predictions provided by
existing bot identification approaches to propose improved models that detect bots
with better performance. Section 4.1 is based on our publication (Golzadeh et al.,
2022a) that presents an exploratory study on the performance of existing bot identi-
fication approaches and highlight that bots are among the top contributors in certain
repositories. Then, we propose and evaluate a new ensemble model that combines
the prediction provided by multiple bot identification approaches to provide a more
accurate final prediction. Section 4.2 is based on our publication (Chidambaram
et al., 2022) that presents empirical results on the predictions made by BoDeGHa on
a set of contributors and highlight its limitations. To overcome these limitations, we
introduce a model that improves the contributor type predictions by leveraging the
predictions provided by BoDeGHa across multiple GitHub repositories.

41
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4.1. An ensemble bot identification model

In Section 1.4, bots have been shown to belong to the top contributors in certain
repositories. Their prevalence is challenging for researchers conducting quantitative
socio-technical analyses on software repositories since neglecting the presence of bots
might lead to incorrect and misleading conclusions during empirical analyses as men-
tioned in Section 1.5. The ability to identify bots is also important for empirical
studies about the role played by bots in collaborative software development (Wessel
et al., 2018). Last but not least, communities and funding organisations can benefit
from bot identification tools to correctly recognise, accredit and sponsor human ac-
tivity (Hauff & Gousios, 2015). This section addresses a part of Goal 1 of this thesis.
Section 4.1.1 provides the motivation and research questions. Section 4.1.2 quantifies
the number of repositories, bots and humans that are used in this study. Section 4.1.3
details on the training and evaluation of a new bot identification model that com-
bines the predictions of multiple existing bot identification approaches. Section 4.1.4
makes use of this new ensemble model to identify the prevalence of bots among the
active contributors in the selected repositories. Finally, Section 4.1.5 compares the
proportion of commits made by bots and humans in each considered repository.

4.1.1 Motivation

Section 3.1 reported that software developers and repository maintainers use vari-
ous automation mechanisms to reduce their workload and increase productivity in
GitHub. The prevalent presence and activity of bots in software repositories (as
highlighted in Section 1.4) makes it challenging for software engineering researchers
to study socio-technical aspects of software development since their findings may
be biased by not explicitly considering the presence of bots among the contributors
(Golzadeh et al., 2021b). Similarly, it may be important for contributors that their
contributions are properly recognised and rewarded since collaborative software de-
velopment activities are often considered as a criterion for employers when hiring
developers (Hauff & Gousios, 2015). This is especially important when funding or
donations are awarded to contributors based on their contributions. While there are
tools such as SourceCred1 to support communities in automatically measuring and
rewarding value creation, they do not automatically identify bots and their activities
so far. This is where the bot identification approaches presented in Section 3.2.1 come
to the rescue.

This section is based on my co-authored publication in the International Workshop
on Bots in Software Engineering (Golzadeh et al., 2022a), and presents an exploratory
study on the accuracy of five bot identification approaches on a set of 540 contributors
from 27 GitHub repositories. We show how prevalent bots and their activities are,
and that none of the existing bot identification approaches are accurate enough to
detect bots even among the most active contributors. We also show that combining
these approaches increases the precision and recall of bot identification but remains

1https://sourcecred.io

https://sourcecred.io
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insufficient to capture all bots and their activities. This lack of identifying all bots
highlights the need for improved bot identification approaches.

4.1.2 Ground-truth dataset of contributors
In this section, our goal is to empirically evaluate the accuracy of bot identification
approaches. To do so, we need to have a dataset of active software development repos-
itories with a large number of commits and contributors along with their ground truth
(i.e., bot or human.) We relied on the SEART GitHub search tool (Dabic et al., 2021)
to query candidate repositories that have at least 100 contributors, were not fork and
had been active in October and December 2021. From these, we randomly selected 27
large and active repositories that have at least 1,200 commits and 200 contributors. In
total, the 27 selected repositories account for 175,499 commits from 9,426 contributors
and cover a wide variety of programming languages (e.g., Javascript, Python, Java,
PHP, Ruby, Rust, Go) and software domains such as software development packages,
plugins, and tools.

For each repository, we queried the GitHub REST API’s contributors endpoint
to retrieve the 20 most active GitHub contributors in terms of commits, and their
respective number of commits. The resulting dataset consists of 540 contributors. To
obtain the ground-truth of contributors, two researchers (co-authors of the publication
Golzadeh et al. (2022a)) manually and independently followed the guidelines given
for this process and determined the type of all the considered contributors. For
each contributor, the researchers checked their (1) GitHub profile, (2) commit and
commenting activity, and (3) activities through events endpoint. During this process,
we found 50 bots out of the 540 considered contributors, which will be used as a
ground-truth for deciding on the contributor type.

4.1.3 Ensemble classification model
Bot identification approaches. In this section, we evaluate the accuracy of the
following five bot identification approaches:

1. GitHub account type. This approach relies on the GitHub REST API’s users
endpoint to determine whether a given GitHub contributor is a bot actor. If the
value of the “type” field in the JSON response provided by the users endpoint
is “Bot”, then we can conclude that the contributor corresponds to a bot actor
(belonging to either a GitHub App or internal automation service) as explained
in Section 1.3.

2. “bot” suffix. This approach relies on the presence of the string “bot” at the end
of the author’s name. It has been used by several research studies, as explained
in Section 3.2.2.

3. List of bots.2 This approach checks the contributor name against a predefined list
of names of 527 known GitHub bot contributors that were manually identified

2https://doi.org/10.5281/zenodo.4000388

https://doi.org/10.5281/zenodo.4000388
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by Golzadeh et al. (2021b) among 5,000 GitHub contributors.

4. BoDeGHa.3 Golzadeh et al. (2021b) proposed a classification model and tool to
identify bots in GitHub PR and issue activity. Their model is based on features
extracted from issue and PR comments.

5. BoDeGiC.4 Golzadeh et al. (2020) further extended the above approach to sup-
port git commit messages, and implemented the resulting model as part of a
tool named BoDeGiC.

We applied the five bot identification approaches on our dataset of 540 contribu-
tors. Fig. 4.1 shows the classifications provided by these approaches. For readability,
we only report on the 87 contributors that either correspond to a bot according to
the ground-truth dataset created in the previous section, or that were classified as bot
by at least one of the approaches. Contributors labeled as bot in the ground-truth
are shown on the left side of the vertical blue line. Contributors labeled as human in
the ground-truth are shown on its right. An orange cell indicates that the contributor
was identified as a bot by the corresponding approach, while a blue cell indicates that
it was identified as a human contributor. Grey cells correspond to cases where the
approach is unable to determine the contributor type. In the case of BoDeGHa, this
corresponds to contributors with less than 10 comments in PRs or issues. In the case
of BoDeGiC, this corresponds to contributors having less than 10 commits made with
a committer name matching their GitHub login name.

bot human

Figure 4.1: Classifications (bot, human or unknown) obtained from the five bot iden-
tification approaches. Only bots according to the ground-truth (at the left of the
vertical blue dashed line) and humans wrongly classified as bot (at the right of the
vertical blue dashed line) are displayed.

From this figure, we observe that list of bots, “bot” suffix and GitHub account type
are safer approaches, in the sense they do not wrongly classify human contributors
as bots. At the same time, they missed many actual bots: from 19 for list of bots
to 32 for GitHub account type. We also observe that BoDeGiC effectively captures
34 bots, but at the same time, wrongly considers nine human contributors as bots.
BoDeGHa exhibits a similar behaviour: it is able to capture 25 out of 50 bots, but
wrongly misclassifies 30 humans as bots. We note that none of the approaches is
perfectly effective in detecting bots except for four cases, where the five approaches
do not even agree on whether a given contributor is a bot or not. However, only four

3https://github.com/mehdigolzadeh/BoDeGHa
4https://github.com/mehdigolzadeh/BoDeGiC

https://github.com/mehdigolzadeh/BoDeGHa
https://github.com/mehdigolzadeh/BoDeGiC
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Table 4.1: Recall (R), precision (P) and F1-score (F1) of bot identification approaches
(in ascending order of bot recall).

bots humans overall (weighted)
approach R P F1 R P F1 R P F1

Baseline ZeroR 0.0 0.0 0.0 1.0 .907 .951 .907 .823 .863

GitHub account type .360 1.0 .529 1.0 .939 .968 .941 .944 .928
BoDeGHa .500 .455 .476 .939 .948 .944 .898 .903 .900
“bot” suffix .520 1.0 .684 1.0 .953 .976 .956 .958 .949
List of bots .620 1.0 .765 1.0 .963 .981 .965 .966 .961
BoDeGiC .680 .791 .731 .982 .968 .975 .954 .951 .952

EnsBoD .900 .865 .882 .986 .990 .988 .978 .978 .978

contributors labeled as bot in the ground truth are not detected as such by any of the
approaches (shown before the vertical blue dotted line in Fig. 4.1), suggesting that a
combination of the approaches could lead to an improved bot identification model.

We build such an ensemble model called EnsBoD, by training a decision tree
classifier taking as input the classifications made by each of the five approaches and
providing a final decision whether the corresponding contributor is bot or human. We
trained and validated EnsBoD following a 10-fold cross-validation process.

Table 4.1 reports on the precision, recall and F1-score of each approach applied
on the whole dataset of 540 contributors, distinguishing these scores between bot and
human contributors. Since the dataset has a fairly imbalanced number of human and
bot contributors and for completeness, we also report on the overall weighted scores
by attributing a class weight inversely proportional to the number of cases. Given
there are far more human contributors than bot contributors in the dataset, these
high scores (between 0.898 and 0.966) are mostly driven by the scores obtained for
human contributors. To ease the interpretation of these scores, we also provide the
scores for a baseline ZeroR model classifying all contributors as human contributors
(i.e., the majority class).

The observations that can be made from Table 4.1 for the existing bot identifi-
cation approaches match the ones we made from Fig. 4.1. In particular, we observe
that some approaches (namely GitHub account type, “bot” suffix and list of bots) have
a perfect precision but are not able to capture as many bots as BoDeGiC. This should
not come as a surprise. For example, GitHub account type has no false positive since
it is impossible for a human contributor to flag his/her own user account as a bot
corresponding to a GitHub App or internal automation service. Similarly, list of bots
relies on a predefined list of bot names that were manually validated by a group of
researchers. On the other hand, the precision reached by “bot” suffix is surprisingly
higher than what was reported by Golzadeh et al. (2021b). Depending on the ground-
truth contributor type, we found that only around 4% of the contributors having “bot”
in their name actually correspond to human contributors.

The mean scores we obtained for EnsBoD are reported in the last row of Table 4.1.
Even if it was trained and validated on a small dataset, the EnsBoD model already
outperforms any of the five other approaches, with an average recall of 0.900 and
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an average precision of 0.865 for bots. In Section 4.1.4, we empirically assess the
prevalence of bots among contributors, by relying on EnsBoD.

4.1.4 Prevalence of bots among active contributors
Section 4.1.1 underlined the importance of detecting bots in software repositories,
not only for researchers aiming at quantifying and understanding their impact on the
development process, but also for properly recognising and rewarding contributions
made by human contributors. This section aims to quantify the prevalence of bots
among the 20 most active contributors in the 27 considered repositories.

We applied EnsBoD on each of the 540 contributors of our dataset to quantify
how many of them can be detected. Fig. 4.2 shows the output of EnsBoD for each
repository (x-axis) and each contributor (y-axis) sorted by the number of commits
they made in the repository. In complement to the output of EnsBoD (i.e., bot
or human), we indicate whether the output is correct (“human user” and “correctly
classified bot”) or not (“human classified as bot” and “missed bot”).

We observe that all the considered repositories are making use of bots, some
of them even having four different bots among their 20 most active contributors.
Interestingly, many of these bots are responsible for most of the commits in the
repositories. For instance, the most active contributor (ranked 1) of six repositories
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Figure 4.2: Rank in descending order of number of commits made in the repository
by top 20 most active contributors in 27 popular open-source software repositories.
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Figure 4.3: Proportion of commits made by the 20 most active contributors in each
repository.

is a bot, while 18 out of 27 repositories have a bot in the top three contributors.
We also observe that a non-negligible amount of bots are missed by EnsBoD.

For instance, five bots are missed and three of them are among the five most active
contributors of the repositories. Similarly, a non-negligible amount of actual human
contributors are wrongly classified by EnsBoD: there are seven human contributors
that are misclassified as bots, of which one is the most active contributor in the
corresponding repository, and five others are within the 10 most active contributors.

These findings show that, while bot identification approaches can help in doing
so, even an optimistic combination of them still misses some bots, and still wrongly
considers some human contributors as bots.

4.1.5 Presence of bots in commits

This section aims to quantify the proportion of commits made by bot and human
contributors in their respective repositories. This is especially important given that
tools such as SourceCred reward contributors based on their activity, including their
commit activity. For each repository, we counted the commits made by each of the
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20 most active contributors, distinguishing between bot and human contributors.
Fig. 4.3 reports on the proportion of commits made bots and human contributors in
each repository.

The figure shows that the commits made by bots represent up to 69.7% of the
commit activity. On average, approximately 16% of the commits in these repositories
are made by bots (median is 12%), even if bots only account for 9% of the top 20
contributors on average (median is 10%).

While, as observed in Section 4.1.4, EnsBoD is able to detect most of the bots,
it still misses some of them, and the missed ones are responsible for 8%, 7.3%, 4.2%,
2.5% and 1.7% of the commits in their respective repositories (i.e., 4.7% on average).
On the other hand, EnsBoD wrongly classified seven human contributors as bots,
and these contributors were responsible for 38.4%, 11.5%, 4.8%, 1.5% and 1.2% of the
commits (i.e., 10.4% on average).

This again underlines the importance of considering bots when analysing commit
activity in software repositories, and highlights the need for better bot identification
approaches to do so.

4.2. Leveraging predictions in multiple repositories

As seen in Section 3.2, BoDeGHa predicts for each contributor with enough activity
in the repository whether this contributor corresponds to a bot or a human. If a
contributor has not made enough comments, BoDeGHa classifies it as unknown. This
section completes Goal 1 of this thesis, and is based on my co-authored publica-
tion in the International Workshop on Bots in Software Engineering (Chidambaram
et al., 2022). This section proposes a new model that improves bot identification
by BoDeGHa in GitHub repositories. Section 4.2.1 presents the motivation and re-
search questions addressed in this section. Section 4.2.2 quantifies the number of
repositories and contributors considered in this section. Section 4.2.3 quantifies how
frequently contributors are active in multiple repositories and Section 4.2.4 quantifies
how frequently contributors have different or incomplete predictions. Section 4.2.5
presents the improved GitHub bot identification model to fix different predictions
and Section 4.2.6 uses the model to fix incomplete predictions.

4.2.1 Motivation

As BoDeGHa works at the repository level, the same contributor active in multiple
GitHub repositories may have different predictions, that is, the contributor may be
classified as bot in some GitHub repositories and as human in some other ones. For
example, while BoDeGHa identified the well-known bot actor dependabot[bot] cor-
rectly as a bot (corresponding to the Dependabot internal automation service) in
many of the considered repositories (explained in Section 4.2.2), it incorrectly iden-
tified dependabot[bot] as a human in artichoke/rand_mt repository. This is because
the 24 comments made by dependabot[bot] in this repository exhibited 10 different
comment patterns, corresponding to a behaviour that is more common for human
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contributors. At the same time, BoDeGHa classifies the same bot actor as unknown
in cossacklabs/themis repository because it only has 9 comments in this repository.

Similarly, a human contributor can be sometimes classified as a bot. For exam-
ple, in the GitHub repository rust-lang/libc we found a human contributor5 that is
detected as bot because most of his/her comments follow a single comment pattern
of the form “bors r+”. This comment is used by a human to instruct the bors bot to
accept the PR. On the other hand, this contributor is correctly classified as human
in crossbeam-rs/crossbeam and rust-lang/rust repositories for example.

This shows that contributors have different predictions depending on the repos-
itory BoDeGHa is applied on. To predict the contributor type irrespective of the
repository, we can depend on the wisdom of the crowd principle. More specifically,
if one assumes that BoDeGHa is more often correct than wrong in its predictions,
then, given a contributor having multiple predictions, we can assume that the most
frequent prediction (either bot or human) is correct, while the least frequent one is
not.

The goal of this section is to improve the identification accuracy of BoDeGHa for
bots active in issue and PR comments. For this, first we investigate how frequently
such situations occur in GitHub repositories. Then we quantify how frequently con-
tributors have different predictions (that is, predicted as bot in one repository and
human in another repository by BoDeGHa), and how frequently they have incomplete
predictions (that is, predicted as unknown by BoDeGHa). Also, we provide prelimi-
nary insights on the wisdom of the crowd principle approach to improve the accuracy
of BoDeGHa by leveraging predictions from multiple repositories. Further, we eval-
uate to which extent different and incomplete predictions can be fixed based on the
wisdom of the crowd principle. More specifically, we address the following research
questions using the final considered dataset (explained in Section 4.2.2):

• How frequently are contributors active in multiple repositories? We observe that
one third of the contributors are active in commenting in multiple repositories.

• How frequently do contributors have different or incomplete predictions? We
show that more than half of the contributors identified at least once as bots
have different or incomplete predictions.

• To which extent can we fix different predictions made for the same contributor?
We show that an improvement of BoDeGHa that integrates the wisdom of the
crowd principle is effective at fixing different predictions.

• To which extent can we complete predictions? We show that the same approach
is promising to address incomplete predictions.

4.2.2 Dataset
The BoDeGHa bot identification tool takes as input a GitHub repository and outputs
whether each contributor in the repository correspond to bot or human. Since our goal

5Name is hidden to comply with GDPR regulations.
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Table 4.2: Number and proportion of contributors in function of the number of repos-
itories they are active in.

# repositories → 1 2 3 4 or 5 6 - 9 10+
# contributors 5,671 1,530 496 385 239 211
% contributors 66.5% 17.9% 5.8% 4.5% 2.8% 2.5%

is to improve the performance of BoDeGHa by leveraging predictions from multiple
repositories, we need a large collection of GitHub repositories with contributors being
active in multiple repositories. Good candidate datasets are collections of repositories
associated to the collaborative development of open source software packages for spe-
cific programming languages. This is because they are more likely to be stable since
they are distributed through package managers, have closely related projects that in-
crease the likelihood of the same contributor being involved in multiple repositories,
and tend to avoid repositories created merely for experimental or personal reasons,
or that only show sporadic traces of activity (Kalliamvakou et al., 2014).

We collected the GitHub repositories associated with the software packages that
are distributed through the Cargo package manager, for the Rust programming lan-
guage. In October 2021, 68,621 Rust packages were available on Cargo and 38,886 of
them (i.e., 56.7%) have an associated repository on GitHub. Since we need bots to
be active in the repositories to conduct our empirical study, and since bots are more
likely to be present in larger and more mature repositories, we excluded packages
that do not even refer to their homepage or to their documentation. This left us with
22,156 packages. Given that BoDeGHa relies on the comments made in issues and
PRs to identify bot contributors, we excluded repositories having less than 100 issues
or PRs. At the end of the data extraction process, the dataset contains 1,039 GitHub
repositories accounting for 147,426 pairs of contributor/repository.

4.2.3 Contributor activeness in multiple repositories
As we aim to improve bot identification by leveraging predictions made on multiple
repositories, we need contributors to be active in more than a single repository. This
section aims to quantify how frequently contributors are active in multiple reposito-
ries. The 147,426 pairs of contributor/repository in our dataset correspond to 57,757
distinct GitHub contributors, already indicating that some contributors are active
in more than one repository. Only 8,532 contributors out of these 57K (14.8%) have
enough commenting activity in at least one repository for BoDeGHa to be applied. For
each of these 8,532 contributors (i.e., each distinct GitHub contributor), we counted
the number of repositories that each contributor was active in. Table 4.2 reports on
the number and proportion of contributors in function of the number of repositories
they are active in.

We observe that while most contributors (5,671 out of 8,532, 66.5%) are active in
a single repository only, around one third of the contributors (2,861, i.e., 33.5%) are
active in multiple repositories. We will focus on those 2,861 contributors since they
correspond to those for which BoDeGHa will produce several, potentially different (i.e.,
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bot and human) or incomplete (i.e., unknown) predictions. These 2,861 contributors
are active in a total of 1,010 distinct repositories.

4.2.4 Number of different or incomplete predictions

We applied BoDeGHa on each of the 1,010 repositories identified in Section 4.2.3 in
order to get the predictions for each of the 2,861 contributors active in two or more
repositories. Under the hood, BoDeGHa downloads up to 100 PR or issue comments
for each contributor active in the repository. Only the comments made during the last
five years at the moment of conducting the experiment (i.e., after December 2016)
are considered. BoDeGHa then analyses these comments and predicts whether the
contributor corresponds to a bot or a human contributor based on several features
including the repetitiveness of comments and the number of comment patterns. If
a contributor has less than 10 comments, BoDeGHa classifies it as unknown. At the
end of this process, we have a total of 41,542 predictions of which 1,146 correspond
to bot, 10,227 to human and 30,169 to unknown. The high proportion of unknown
predictions (73%) indicates that most contributors have less than 10 comments in the
considered repositories.

Since our focus is on improving bot identification, we select contributors that were
classified as bot at least once. Out of the initial 2,861 distinct contributors active in
at least two repositories, 229 (8%) were classified as bot at least once. Among them,
106 (46%) were consistently classified as bot in all the repositories they were active
in. Out of the 123 remaining contributors having been predicted as bot at least once,
60 have different predictions (i.e., they were also classified as human) and 63 have
consistent but incomplete predictions (i.e., they were also classified as unknown).

To assess to which extent bot identification can be improved by leveraging predic-
tions from multiple repositories, we need to determine the correct type (i.e., bot or
human) of each contributor. Following the same guidelines mentioned in Section 4.1.2,
two researchers (co-authors of our publication Chidambaram et al. (2022)) manually
and independently determined the type of 229 contributors that were at least once
predicted as bot. Following an inter-rater agreement process, the first step of this
process ended up with an agreement on 95% of the cases. The remaining ones were
discussed together, ending up with an agreement on all of them. With this process,
we found that BoDeGHa incorrectly predicted bot in 110 cases and incorrectly pre-
dicted human in 31 cases. Table 4.3 summarises the number of actual bot and human
contributors we found, as well as the number of bot, human and unknown predictions
obtained for them.

4.2.5 Leveraging different predictions

Section 4.2.4 revealed that many contributors have different predictions depending on
the repository BoDeGHa is applied on. In this section, we propose an approach based
on the wisdom of the crowd principle to fix these different predictions.

Let WoC-P be such bot identification model. WoC-P stands for Wisdom of the
Crowd principle for Predictions and works on top of BoDeGHa by automatically re-
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Table 4.3: Number of actual bot and human contributors, and their number of bot,
human and unknown predictions.

predictions
contributors # bot # human # unknown

actual bot 142 1,110 31 413
actual human 87 110 288 1,134

total 229 1,220 319 1,547

placing the less frequent predictions of a contributor with the most frequent ones.
For example, if a contributor is predicted as human in 4 out of 10 repositories they
contributed to and is predicted as bot in the remaining 6 repositories, then WoC-P
gives the contributor type as bot. Ties are arbitrarily resolved as human. We applied
both BoDeGHa and WoC-P on the 84 contributors that have at least two predictions
of which one is bot. Fig. 4.4 shows, for each contributor, the number of human pre-
dictions, the number of bot predictions, and whether it is an actual bot or human.
To visually distinguish overlapping points, we added a jitter of 0.25 on both axes.
The diagonal line illustrates the WoC-P model: any contributor above the line will
be consistently predicted as bot (i.e., the human predictions are replaced by bot pre-
dictions), while any contributor below will be consistently predicted as a human (i.e.,
the bot predictions are replaced by human predictions).
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Figure 4.4: Number of bot and human predictions, each point is a contributor.

As can be observed from Fig. 4.4, the approach proposed by WoC-P seems promis-
ing. Most of the contributors mostly have predictions corresponding to their actual
type. Only five human contributors have a higher number of bot predictions than
human predictions. These contributors will be consistently but wrongly predicted
as bot by WoC-P. To assess to which extent BoDeGHa can be improved by WoC-P,
we evaluated both models on the 84 contributors. Table 4.4 reports on the resulting
number of true positives (TP), true negatives (TN), false positives (FP), false nega-
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Table 4.4: Score comparison between BoDeGHa and WoC-P.

TP TN FP FN Acc P R F1
BoDeGHa 928 288 79 31 91.7 92.2 96.8 94.4

WoC-P 959 348 19 0 98.6 98.1 100.0 99.0

tives (FN) as well as on the accuracy (Acc), precision (P), recall (R) and F1-scores
(F1) of the two models.

We observe that WoC-P actually improves the predictions made by BoDeGHa.
WoC-P replaced a total of 101 predictions out of 1,326 (i.e., 7.6%): 65 bot predictions
were correctly converted to human predictions, while 36 human predictions were
converted to bot predictions, among which 31 correspond to actual bots. This leads
the number of false negatives to drop from 31 to 0, and the number of false positives to
decrease from 79 to 19. These 19 incorrect predictions correspond to the five human
contributors above the diagonal line in Fig. 4.4. As a consequence, WoC-P has higher
accuracy, precision, recall and F1-scores compared to BoDeGHa.

4.2.6 Leveraging incomplete predictions
Till the previous section, we relied on the wisdom of the crowd principle, using the
most frequent prediction to fix the less frequent predictions. This section aims to
determine whether a similar approach can be followed to fix unknown predictions as
well.
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Figure 4.5: Accounts predicted as bot/unknown vs ground truth.

Fig. 4.5 shows the number of unknown and bot predictions for the 63 contributors
that were either predicted bot or unknown (i.e., that have no human predictions).
However, 33 human contributors are predicted only as bot or unknown. Converting the
unknown predictions to bot for these 33 human contributors would only increase the
number of incorrect predictions (FP). For instance, while converting the 184 unknown
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predictions of the 30 bots increases the number of correct predictions from 336 to
520, doing the same for the 158 unknown predictions of the 33 human contributors
increases the number of incorrect predictions from 35 to 193.

Nevertheless, we observe that most of these human contributors have a low num-
ber of bot predictions compared to the actual bot contributors. For instance, there are
17 bots and no human having three or more bot predictions. On the other hand, all
human contributors and “only” 13 bots have one or two bot predictions. Converting
only the unknown predictions of contributors having three or more bot predictions
would increase the number of correct predictions from 318 to 460, without increasing
the number of incorrect predictions. However, since this threshold of “3+ bot pre-
dictions” is obtained by observation, it cannot be integrated into the WoC-P model
without prior validation on a bigger dataset.

4.3. Summary and conclusions

Some of the existing bot identification approaches (presented in Section 3.2) consider
only a limited number of activity types and their activity at repository level. This
makes these approaches unable to detect a bot that is involved only in specific ac-
tivity types that are not considered by them, and leading to different or incomplete
predictions when used on multiple repositories. This makes it difficult to determine
the actual type of contributor. This chapter addressed Goal 1 of this thesis by devel-
oping two new bot identification models that rely on existing approaches to improve
the overall performance of bot identification.

One approach leverages the predictions provided by existing bot identification ap-
proaches and provide the final decision on the type of the contributor. This resulted
in an ensemble model based on Decision Tree classifier that performs better than
the existing approaches. Another approach leverages the predictions provided by the
bot identification tool BoDeGHa on multiple repositories and provide a final decision
on the type of each contributor. This resulted in a model that uses wisdom of the
crowd principle to conclude the type of contributor based on the most frequent pre-
diction. This approach provided good improvement when used on top of BoDeGHa’s
predictions.



CHAPTER 5

Differentiating bots from humans
based on activities

Together with Chapter 6, this chapter aims to addressGoal 2 of this thesis. Chapter 4
presented two improved GitHub bot identification models. They are limited to specific
types of activities performed by GitHub contributors, and use features based on the
profile login name, comments made in issues and PRs, and git commit messages.
This makes these bot identification models unable to detect bots that do not engage
in such activities. But, as shown in Section 2.1 and Section 3.1, bots perform many
more activity types. So, in this chapter, we assess if considering contributor activity
sequences in GitHub (without restricting to a single repository) across a wider range
of activity types and features based on activity patterns could potentially be useful
indicators to identify GitHub bots more accurately.

The low-level, technical event types obtained through the GitHub API do not
explicitly correspond to the high-level, conceptual activity types performed by a con-
tributor in GitHub. For example, a single event type CreateEvent (as discussed in Sec-
tion 2.7) can correspond to multiple activity types: creating a repository, a branch, or
a tag. For this reason, Section 5.1, which is based on our publication (Chidambaram
et al., 2023a), presents a detailed mapping to convert low-level events to higher-level
activities, and provides a dataset of contributor activity sequences. In Section 5.2,
which is based on our publication (Chidambaram et al., 2023b), we use this dataset to
perform a preliminary analysis that considers a wider range of activity types to iden-
tify statistically differentiating features based on activity patterns that can identify
bots.

55
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5.1. Identifying activities from GitHub events

5.1.1 Motivation and structure

This section contributes to Goal 2 of this thesis and is based on my co-authored
publication in the International Conference on Mining Software Repositories (Chi-
dambaram et al., 2023a). The corresponding dataset of GitHub contributor activity
sequences along with the mapping from event types to activity types is publicly avail-
able on https://doi.org/10.5281/zenodo.7740520.

Existing bot identification approaches rely on a limited set of activity types per-
formed by GitHub contributors, such as comments made in issues and PRs, and
commit messages. Relying on GitHub’s REST API events endpoint, which provides
17 event types, we can obtain a wider range of activities performed by contributors
in GitHub. Also, by making three API queries, we can quickly obtain 300 activities
that a contributor performed in the last 90 days in GitHub. However, they do not
explicitly correspond to the activity types performed by a contributor. For example,
a single event type CreateEvent (as discussed in Section 2.7) is used to encode differ-
ent activity types: creating a repository, a branch, or a tag. Also, a single activity
of closing an issue with a comment will be encoded by two events of different types:
IssuesEvent and IssueCommentEvent. This raised the need to map low-level event
types accessible through the events endpoint to higher-level activity types covering
a wide range of activities such as issues, PRs, releases and repository management.
We use this mapping to create a dataset of high-level activities carried out by bots
and human contributors in GitHub. An important contribution of the dataset is that
it encodes activities at a more conceptual level of granularity than low-level GitHub
events. Another important contribution of the dataset is that it contains historical
activity data that can no longer be recovered through GitHub nor its API, and that
cannot be retrieved easily from third-party datasets such as GH Archive. Indeed, the
size of the hourly contributor events of GH Archive ranges from 100Mb to 1000Mb,
and finding all events generated over the last 105 days would result in processing more
than 1.5Tb of data. Our activity dataset is suitable to perform empirical studies of
how bots play a role in collaborative software development. As an illustration of this,
Section 5.2 performs a preliminary analysis of activity patterns in bots and human
contributors.

The remainder of the current section is structured as follows. Section 5.1.2 details
the dataset construction process. Section 5.1.3 provides the data schema of the dataset
and Section 5.1.4 discusses the limitations of the dataset.

5.1.2 Dataset construction

This section explains the methodology followed to extract the events carried out by
GitHub contributors using the GitHub REST API and to identify higher-level activ-
ities from the events. These activities aim to facilitate the characterisation of bot
and human behaviour in GitHub repositories, by enabling the analysis of activity
sequences and activity patterns of bot and human contributors. Fig. 5.1 provides a

https://doi.org/10.5281/zenodo.7740520
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Figure 5.1: Dataset construction process.

high-level summary of this process, decomposed in three steps: (A) Curating contrib-
utors, (B) Querying events, and (C) Generating activities.

A. Curating contributors

In order to gather activities made by bots and human contributors, first we need to
come up with a list of bots and human contributors. To do so, we rely on four curated
datasets that were used for training the bot identification tools BoDeGHa (Golzadeh
et al., 2021b) and BotHunter (Abdellatif et al., 2022) and for analysing bot usage in
collaborative software development (Wang et al., 2022; Chidambaram et al., 2022).
These datasets provide a list of manually verified bots and human contributors. We
combined all bots identified in these ground-truth datasets and removed duplicates,
leading to 890 distinct bots, and we randomly selected a similar number of human
contributors.
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Figure 5.2: Distribution of bots across four initial datasets that will form the basis of
our own dataset.
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Out of the 890 considered bots, 165 are bot actors, 686 are acting through GitHub
user accounts, and 39 were dismissed as they no longer exist on GitHub. Figure 5.2
shows the distribution of these 851 bots among the four curated datasets we relied
on. We can observe that a majority of 507 bots are obtained from the ground-truth
dataset published by Golzadeh et al. (2021b). The dataset provided by Abdellatif
et al. (2022) allowed us to find 210 more bots. We added, 13 new bots identified by
Chidambaram et al. (2022). The remaining 121 bots were obtained from Wang et al.
(2022).

B. Querying events

Given the name of a contributor, the GitHub REST API’s events endpoint provides
all recent events that were generated by the contributor (e.g., CreateEvent when a
repository is created, or IssueCommentEvent when commenting an issue). We relied
on these events to generate higher-level activities. However, the events endpoint can
only be used to retrieve up to 300 events, and only those that were generated during
the last 90 days. This second limitation is not really impactful since most contributors
require less than 90 days to generate 300 events. The first limitation, however, has an
important implication in the case of contributors generating more than 300 events in
short periods of time, since older events will no longer be available through the API.

Since our aim is to provide all the activities performed by the considered contrib-
utors during a period of 105 days, between 25 November 2022 and 9 March 2023, we
needed to iteratively and frequently query the API to ensure that no event is missed.
Therefore, we queried the API every 6 hours for each contributor. To ensure that no
event was missed between two consecutive calls X and Y , we checked whether the
oldest returned event in Y was part of the events returned in X (i.e., there was no
“gap” between both event sequences). In case an event was missed, we removed the
corresponding contributor from our list. We found 28 human contributors and 69 bots
in such a situation. We also excluded 74 human contributors and 397 bots that did
not generate any event during the considered period of time. By doing so, we retrieved
1,027,384 distinct events for 385 bot contributors and 616 human contributors.

C. Generating activities from events

Now that we have obtained the events that 385 bots and 616 human contributors
performed in GitHub, the next step is to generate the activities made by these con-
tributors based on the events they produced. To do so, we first needed to come up with
a classification of high-level activities and their mapping to lower-level GitHub events.
Three researchers carefully went over the documentation of GitHub REST API and
the various event types to identify the high-level activities that can be deduced from
them. We also manually performed various activities through the GitHub UI to ob-
serve the events generated by them in order to map events and activities. As per
the documentation,1 GitHub events endpoint provides 17 event types, however, we

1https://docs.github.com/en/rest/using-the-rest-api/github-event-types?apiVersion=
2022-11-28

https://docs.github.com/en/rest/using-the-rest-api/github-event-types?apiVersion=2022-11-28
https://docs.github.com/en/rest/using-the-rest-api/github-event-types?apiVersion=2022-11-28
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Table 5.1: Activity types and the corresponding event type(s) with their payload
detail. We also indicate if the event type is required or optional.

Activity type Optional Event type(s) Payload
Creating repository CreateEvent ref_type=“repository”
Creating tag CreateEvent ref_type=“tag”
Creating branch CreateEvent ref_type=“branch”
Deleting branch DeleteEvent ref_type=“branch”
Deleting tag DeleteEvent ref_type=“tag”
Making repository public PublicEvent -
Adding repo collaborator MemberEvent action=“added”
Forking repository ForkEvent -
Starring repository WatchEvent action=“started”
Editing wiki page GollumEvent action=“created” or

action=“edited”
Publishing release ReleaseEvent action=“published”

X CreateEvent ref_type=“tag”
Opening issue IssuesEvent action=“opened”
Transferring issue IssuesEvent action=“opened”
Closing Issue IssuesEvent action=“closed”

X IssueCommentEvent action=“created”
Reopening Issue IssuesEvent action=“reopened”

X IssueCommentEvent action=“created”
Commenting issue IssueCommentEvent action=“created”
Opening PR PullRequestEvent action=“opened”
Closing PR PullRequestEvent action=“closed”

X PushEvent -
X IssueCommentEvent action=“created”

Reopening PR PullRequestEvent action=“opened”
X IssueCommentEvent action=“created”

Commenting PR IssueCommentEvent action=“created”
Commenting PR changes PullRequestReviewCommentEvent action=“created”

X PullRequestReviewEvent action=“created”
Reviewing code PullRequestReviewEvent action=“created”
Pushing commit PushEvent -
Commenting commit CommitCommentEvent action=“created”

considered only 15 as the other two event types SponsorshipEvent and PullRequestRe-
viewThreadEvent were not performed by our considered set of contributors during the
observation period and could not replicate this event. Through an iterative process,
we unanimously agreed on a final list of 24 high-level activity types and their mapping
to the generated 15 event types.

This mapping between activity types and event types is not one-to-one, since some
activity types are obtained from sequences of two event types, and some event types
may give rise to different activity types depending on the kind of data that is provided
by the event type. For example, activity type Closing issue (with a comment) is
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obtained from a combination of IssuesEvent and IssueCommentEvent event type. As
another example, the CreateEvent event type can correspond to one of the activity
types Creating repository, Creating branch or Creating tag, depending on the value of
its ref_type field. Table 5.1 lists the 24 activity types we identified as well as their
mapping to event types. Optional event types are marked with a Xin the ‘Optional’
column.

Using this mapping, we converted the 1M+ events from step B (Fig. 5.1) into
833,811 activities of which 649,755 are made by 385 bots and 184,056 activities by
616 human contributors. This already indicates that, on average, bots are consid-
erably more active than humans. We provide the generated activities in two sepa-
rate datasets: one for bots and one for human contributors. The latter dataset is
pseudo-anonymised to comply with GDPR regulations, by hashing the names of hu-
man contributors and the repositories they are active in, and by removing all unique
identifiers that could be used to reveal their identities.

5.1.3 Data schema

The activity datasets are provided as JSON files accompanied by a corresponding
JSON schema. Listings 5.1 and 5.2 provide excerpts showing two activities made by
a bot contributor. Along with the date and the activity type, each activity mentions

Listing 5.1: Example of a Publishing release activity performed by the kubevirt-bot
bot account at 16:45:52 on 03-01-2023 in the kubevirt/kubevirt repository.

1 {
2 "date": "2023-01-03T16:45:52+00:00",
3 "activity": "Publishing a release",
4 "contributor": "kubevirt-bot",
5 "repository": "kubevirt/kubevirt",
6 "release": {
7 "name": "v0.59.0-alpha.2",
8 "description_length": 9834,
9 "created_at": "2023-01-03T15:59:12+00:00",

10 "prerelease": true,
11 "new_tag": false,
12 "GH_node": "RE_kwDOBJIk984FO7NC"
13 },
14 "gitref": {
15 "type": "tag",
16 "name": "v0.59.0-alpha.2",
17 "description_length": 0
18 }
19 }

the name of the contributor and the repository in which the activity took place.
Depending on the activity type, additional fields are provided, the details of which
can be found alongside the shared dataset. For example, activity type Publishing
release in Listing 5.1 provides additional details about the release (lines 7–12) and
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details regarding the tag associated to the release in gitref (lines 15–17). Similarly,
activity type Commenting issue in Listing 5.2 provides additional details about the
comment (lines 7 and 8), the issue (lines 11–17) and the conversation (line 20)
involved in the activity. Whenever available, we provide the GH_node (lines 8 and 17)
of the corresponding objects, a globally unique identifier to find related objects (e.g.,
comments, issues or PRs) on GitHub.

Listing 5.2: Example of a Commenting issue activity performed by the kubevirt-bot
bot account at 14:13:19 on 26-11-2022 in the kubevirt/kubevirt repository.

1 {
2 "date": "2022-11-26T14:13:19+00:00",
3 "activity": "Commenting issue",
4 "contributor": "kubevirt-bot",
5 "repository": "kubevirt/kubevirt",
6 "comment": {
7 "length": 255,
8 "GH_node": "IC_kwDOBJIk985PKH4s"
9 },

10 "issue": {
11 "id": 8294,
12 "title": "SRIOV VF interface not found in VM",
13 "created_at": "2022-08-13T11:10:06+00:00",
14 "status": "open",
15 "closed_at": null,
16 "resolved": false,
17 "GH_node": "I_kwDOBJIk985Pvz5k"
18 }
19 "conversation": {
20 "comments": 9
21 }
22 }

5.1.4 Limitations

A first limitation of the datasets stems in the range of activity types contained in
them. We relied on GitHub’s REST API events endpoint to identify the activities
performed by contributors. However, not all activities on GitHub generate public
events provided by this API endpoint. For example, locking, unlocking and labelling
an issue are not provided by this API endpoint. While such data could be retrieved
through the issues endpoint, it would result in a significant increase in the required
number of API queries.

A second limitation is a consequence of the fact that the events endpoint returns
at most 300 events performed by a contributor in the last 90 days, and that we
queried the API every 6 hours. Since our goal was to provide a complete list of
activities made by contributors, we had to ensure that no event was missed between
consecutive calls (see Section 5.1.2). As a consequence, we had to drop all contributors
that generated at least once more than 300 events in less than 6 hours. While this
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affected only 28 human contributors, bots are usually more active, and we had to
exclude 69 of them. For example, the dependabot[bot] bot actor (corresponding to
the Dependabot internal automation service) frequently takes less than a minute to
generate 300 events. Therefore, and to a limited extent, our dataset is slightly biased
towards contributors that are not “overly active”.

A last limitation relates to the lack of reliability of some data provided by GitHub.
For example, a PushEvent reports on the number of commits pushed through the size
and distinct_size fields. However, we found that the values indicated in these fields
do not always correspond to the actual number of commits that were pushed. Another
example is the merge status reported in a PullRequestEvent that sometimes incorrectly
identifies a merged PR as being unmerged (Gousios & Zaidman, 2014; Kalliamvakou
et al., 2014). This last limitation does not impact any of the analysis in this thesis as
we do not rely on the number of commits and the status of PRs.

5.2. Preliminary features differentiating bots and hu-
mans

This section partly addresses Goal 2 of this thesis. It is based on my co-authored
publication in the International Seminar on Advanced Techniques & Tools for Software
Evolution (SATToSE) 2023 (Chidambaram et al., 2023b). We identify a series of
features to quantitatively distinguish bots from human contributors based on relevant
information such as their activity types, the number of repositories they are involved
in, the time it takes to carry out or switch between activity types, and so on. Such a
set of distinguishing features will be used in Chapter 6 to create a bot identification
model to efficiently and reliably identify whether a contributor is a bot or a human
based on their activities in GitHub.

The remainder of this section is structured as follows. Section 5.2.1 presents a
curated dataset that will be used for analysis in this section. Section 5.2.2 details
the statistical method used to compare the distribution values for bots and human
contributors. Section 5.2.3 to Section 5.2.7 outline the intuition behind choosing each
feature to differentiate bots from humans, and present the statistics that confirm this
intuition.

5.2.1 Curated Dataset
To distinguish bots from human contributors based on their activities in GitHub, we
need to have a dataset of activities that bots and human contributors performed in
GitHub. For this we rely on the dataset created in Section 5.1.2. Fig. 5.3 gives the
proportion of contributors and the maximal number of activities performed by con-
tributors present in the initial dataset. We can observe some infrequent contributors
that performed very few activities. Since such contributors are unlikely to be helpful
in determining distinguishing features between bots and humans, we exclude them
by setting a minimum threshold of 30 activities as inclusion criterion (i.e., at least
roughly one activity every three days on average). The vertical dashed line in Fig. 5.3
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Figure 5.3: Maximal number of activities performed by the contributors (bots or
humans). The vertical dashed line marks the minimum threshold of 30 activities per
contributor that we used to include contributors in our analysis.

Table 5.2: Initial and curated dataset of considered contributors and activities, and
top five activity types along with their number of activities in the curated dataset.

dataset
initial curated

bot # contributors 385 305
# activities 649,755 648,752

human # contributors 616 408
# activities 184,056 181,751

total # contributors 1,001 713
# activities 833,811 830,503

indicates this threshold. In Chapter 6, we will evaluate the performance of the bot
identification model in function of the number of considered activities.

Based on this threshold of 30 activities, we excluded 80 bots and 208 humans
from the dataset, together with their 3,308 corresponding activities. This left us with
305 bots and 408 humans, accounting for a total of 830,503 activities. Table 5.2
summarises the curated dataset that will be used for our analysis.

5.2.2 Statistical methods

Whenever appropriate, for the features that will be studied in upcoming sections
we carry out statistical tests to compare the distribution values for bots and human
contributors, using the non-parametric Mann-Whitney U test (a.k.a. Wilcoxon rank-
sum test). We will reject the null hypothesis that the two distributions are equal using
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a significance level of α = 0.001 after controlling for family-wise error rate using the
Bonferroni-Holm method (Holm, 1979). For each test for which the null hypothesis
can be rejected, we also compute the effect size using Cliff’s delta (δ) (Cliff, 1993).
Following the interpretation by Romano et al. (2006), we consider the effect size to
be negligible if δ < 0.147, small if 0.147 ≤ δ < 0.33, medium if 0.33 ≤ δ < 0.474 and
large if 0.474 ≤ δ.

When visualising the distributions of some metrics, we will make use of boxen plots
(a.k.a. letter-value plots (Hofmann et al., 2017)) to provide a good representation of
the (often skewed) distribution of the data as opposed to box plots. In a boxen plot,
data representation starts at the median value and extends (i.e., draws a level line)
by half of the remaining data to be covered from the current level. For example, from
50% (median), the next level towards the top will be at (50+25)%, the next level at
(50+25+12.5)% and so on until 95% of the data is covered, data points after this
threshold will be marked as outliers. Similarly, on the lower side, the next level will
be at (50-25)%, the next at (50-25-12.5)% and so on until it reaches the point where
the last 5% of the data is present, after which they marked as outliers. This facilitates
the visualisation and interpretation of skewed distributions. For the same reasons we
hide the outliers in these boxen plots.

Finally, a couple of features are based on the statistical dispersion of some metric.
Gini (Dorfman, 1979), Theil (Theil, 1967), Kolm (Kolm, 1976), Atkinson (Atkinson,
1970) and Hoover (Hoover, 1936) are well-known econometric aggregation metrics to
measure unevenly distributed data. As there seems to be a statistically significant
correlation between these metrics (Vasilescu et al., 2011), choosing one over another
should not impact the results of our analysis. As the well-known Gini coefficient was
used in the past for a similar purpose, i.e., differentiating bots from humans (Golzadeh
et al., 2021b), we will rely on it. Its value is comprised between 0 and 1− 1

n (n is the
number of data points), where a value equal to 0 reflects an equal distribution while
a value close to 1− 1

n expresses a maximal inequality among individuals.

5.2.3 Number of activity types

Intuition: Bots are involved in less activity types than humans.

We expect bots to be mostly involved in a specific set of activities. For example,
a bot that keeps dependencies up-to-date will create PRs only, and is unlikely to
push commits directly to the repository or to comment some issue. On the other
hand, we expect human contributors to perform a wider range activities across the
repositories to which they contribute. For example, human contributors close or merge
incoming PRs in the repositories they maintain while they create PRs and issues in
the external repositories they contribute to. To verify this hypothesis, we computed
for each contributor the number of activity types performed. Fig. 5.4 shows the
distribution of this number of activity types, distinguishing between bot and human
contributors.

In line with our intuition, we observe a clear visual difference with a median of 3
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Figure 5.4: Boxen plots of the distribution of number of activity types performed by
bots and human contributors.

activity types for bots compared to 13 for humans. To confirm that there is a signif-
icant difference between the number of activity types performed by bots and human
contributors, we performed a Mann-Whitney U test between the two distributions.
The null hypothesis is rejected (p = 6.45e− 91) indicating that there is a statistically
significant difference between the number of activity types performed by bots and
human contributors in software repositories. The effect size is large (δ=0.88).

Conclusion: Bots tend to be involved in less activity types than human con-
tributors.

5.2.4 Specialisation of activity types across repositories

Intuition: Bots are more consistent than humans in performing their intended
activity types across the repositories they contribute to.

Not only are bots involved in less activity types than human contributors, but
we expect them to be more consistent in performing these activity types across the
multiple repositories to which they contribute compared to that of humans. Consider
again the case of a bot keeping dependencies up-to-date. Such a bot, regardless of
the repository it is deployed in, will consistently have one activity type across the
repositories (i.e., creating PRs). On the other hand, depending on the repository,
a human contributor may be involved in a limited number of activity types (e.g.,
opening an issue) or a larger number of activity types (e.g., pushing commits, closing
or merging PRs, closing and commenting issues, creating releases).

To capture this intuition, we computed for each contributor the Gini coefficient
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Figure 5.5: Boxen plots of the distribution of Gini coefficient for the number of activity
types performed per repository by bot and human contributors.

of its number of activity types across repositories. Fig. 5.5 shows the distribution of
these Gini coefficients. One can visually observe that the number of activity types per-
formed by bots are more equally distributed (i.e., Gini is closer to 0) across repositories
than for human contributors. To statistically confirm our intuition, we performed a
Mann-Whitney U test between both distributions. The null hypothesis was rejected
(p = 3.12e− 68) indicating a statistical difference between the two populations, with
a large effect size (δ = 0.76).

Conclusion: The number of activity types performed by bots tend to be more
equally distributed across repositories than the number of activity types per-
formed by humans.

5.2.5 Number of repositories

Intuition: Bots are active in more repositories than humans, and tend to be
used within repositories belonging to the same organisations/owners.

We expect bots to be active in more repositories than humans as they do not
have any workload restrictions. We also expect bots to be active in more repositories
belonging to the same owner or organisation since it would make sense to deploy
a bot in all the repositories of the same organisation or owner as long as the bot
is serving its need. For humans, on the other hand, we expect to observe a more
diverse behaviour, in the sense that human contributors might choose to go outside
the boundaries of the repository owner or of its organisation in order to contribute to
external repositories owned by another user or organisation.



67

1 50 100 150 200 250 300
number of repositories

1

50

100

150

200

250

300
nu

m
be

r o
f o

w
ne

rs
bot
human

Figure 5.6: Number of repositories versus number of owners that the contributors are
involved in. A jitter of 0.25 is applied on both the axes.

For each contributor, we computed the number of repositories and the number
of distinct owners (or organisations) the contributor is active in. Fig. 5.6 shows
a scatter plot of the number of repositories versus the number of distinct owners.
To ease visualising the contributors, we added a jitter of 0.25 on both axes, and we
grouped contributors that are active in more than 300 repositories or owners. Overall,
21 bots and 2 human contributors are involved in more than 300 repositories, and 10
of these bots (and no human contributor) are involved in repositories belonging to
more than 300 distinct owners or organisations. On the other hand, among the 158
contributors (i.e., 22.16%) that are active in repositories belonging to a single owner
or organisation, 88% are bots. Among the 81 contributors (i.e., 11.36%) active in
repositories belonging to exactly two owners, 72% are bots. This suggests that bots
tend to be involved in repositories belonging to a smaller number of distinct owners.

Since the number of distinct owners is upper bounded by the number of reposito-
ries, and since the number of repositories is upper bounded by the number of activities
(one cannot be active in more repositories than its number of activities), and in order
to capture the differences observed from Fig. 5.6, we computed for each contributor
its owner ratio as the ratio between the number of distinct owners and the number of
repositories the contributor is active in. This is, owner ratio = #owners

#repositories . An owner
ratio close to 1 indicates that nearly all the repositories in which the contributor is
active in belong to different owners or organisations. On the other hand, a ratio close
to zero indicates that most of the repositories the contributor is active in belong to
the same owner or organisation.

Fig. 5.7 shows the distribution of this owner ratio for bots and human contribu-
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Figure 5.7: Boxen plots of the distribution of owner ratio between bots and humans.

tors. We observe that the ratio is higher for humans than for bots, indicating that
human contributors tend to be involved in repositories belonging to different owners
or organisations, while bots tend to be involved in repositories belonging to a more
limited set of owners and organisations. We confirmed this difference between the
owner ratio of bots and humans by performing a Mann-Whitney U test. The null hy-
pothesis was rejected (p = 9.5e− 15) with a medium effect size (δ = 0.33), therefore
indicating a statistically significant difference between the owner ratio of bots and
humans.

Conclusion: The owner ratio is lower for bots than humans, indicating that
humans tend to be active in repositories belonging to wider range of owners or
organisations than bots.

5.2.6 Time to switch between repositories

Intuition: Bots are not suffering from context switching.

This intuition implies that bots can easily be active in multiple repositories at
the same time, while we expect human contributors to focus their workload on one
repository at a time. As a consequence, we expect the time required to go from one
repository to another one to be greater for human contributors than for bots.

To capture this intuition, we computed for each contributor the time to switch
between two repositories. More specifically, we computed the time difference between
any two consecutive activities made in two distinct repositories. Since a contributor
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can switch between repositories multiple times, we aggregated these time differences
for each contributor by computing the median value of these differences.
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Figure 5.8: Boxen plots of the distribution of the median time (in hours) taken by
bots and humans to switch between repositories.

Fig. 5.8 shows the distribution of the median time (in hours) taken by contributors
to switch from one repository to another. The figure indicates that bots usually
take less time to switch between repositories compared to human contributors. For
instance, the median values are 0.85 hours and 2.77 hours, respectively for bots and
humans. To statistically confirm this difference, we performed a Mann-Whitney U
test between the two distributions. The null hypothesis is rejected (p = 2.14e − 10)
with a small effect size (δ = 0.28), confirming that bots take less time than human
contributors to switch between repositories.

Conclusion: Bots take less time to switch between repositories.

5.2.7 Time between consecutive activities

Intuition: Bots tend to have more regular work rhythms.

Bots are not subject to the same limitations as human contributors in performing
their tasks. For example, bots do not have to sleep or eat, and can afford to work at
any time of the day. Their tasks are usually triggered by external events (such as a
newer version of a dependency) or by activities made by other developers (e.g., a PR
is submitted to the repository and a bot evaluates its code quality). Since developers
can be spread around the world, a bot does not really have a fixed schedule. In
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contrast, humans are more likely to concentrate their work during the day (or during
the evenings or the weekends if they are not professional developers). As a result, we
expect the work rhythm (i.e. the time between two consecutive activities) to be much
more regular for bots than for humans.

To capture this intuition, and to measure the regularity of the activities of each
contributor, we computed the Gini coefficient of the time difference between consec-
utive activities. The lower the value, the more the contributor carries out activities
on regular time intervals.
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Figure 5.9: Boxen plots of the distribution of Gini coefficient of the time between
consecutive activities.

Fig. 5.9 shows the distribution of these Gini coefficients, distinguishing between
bot and human contributors. We observe that, as expected, the Gini coefficient of the
time between consecutive activities is higher for humans than bots, indicating that
humans carry out their activities on a less regular basis than bots. We performed
a Mann-Whitney U test to see whether the two populations exhibit a statistically
significant difference. The null hypothesis was rejected (p = 2.14e − 22) with a
medium effect size (δ = 0.42), confirming the observed difference.

Conclusion: Bots perform their activities on a more regular basis than human
contributors.

5.3. Summary and conclusions

In this chapter, we relied on four available ground-truth datasets and curated a set
of active bots and human contributors in GitHub. This resulted in 385 bots and 616
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humans. For these contributors, we queried their low-level events from the GitHub
REST API’s events endpoint and identified higher-level activities. This resulted in a
dataset of 833K+ activities. Depending on this contributor activity dataset, based on
our intuition and through statistical tests, we found five features that can effectively
differentiate bots from human contributors in GitHub. We found that bots tend to
be specialised in the sense they are involved in a smaller number of activity types
than humans. We showed that bots tend to equally distribute their intended activity
types across multiples repositories, and that bots are usually involved in repositories
belonging to a smaller set of distinct owners or organisations. Also, we found that
bots need less time to switch between the repositories they are involved in and that
they tend to perform their activities more regularly than humans do.

This chapter served as a proof-of-concept to confirm that features based on activ-
ities can be used to distinguish between bots and humans, and served as a first step
towards Goal 2 of this thesis.
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CHAPTER 6

An activity-based bot identification
model

This chapter completes Goal 2 of this thesis. It is based on our journal article
(Chidambaram et al., 2025). Chapter 4 proposed two improved bot identification
approaches, however they suffered from some of the same limitations as the bot iden-
tification approaches that they improved upon. Chapter 5 provided a ground-truth
dataset of contributors in GitHub along with their activities and a set of five features
that can be used as a basis to distinguish bots from humans in GitHub. This chapter
proposes and evaluates an entirely new bot identification model called BIMBAS that
considers a wide a range of activity types (defined in Section 5.1) and more features
corresponding to the activity patterns of contributors to identify bots.

Section 6.1 provides the motivation and objectives of this chapter. Section 6.2
extends the ground-truth dataset of Section 5.1 with more bots and human contrib-
utors. Section 6.3 identifies and quantifies the performance- and efficiency-related
limitations of the bot identification approaches that were presented in Section 3.2.
Section 6.4 details the procedure followed to identify more features than those that
were presented in Section 5.2, train and evaluate the new BIMBAS bot identification
model. Finally, Section 6.5 discusses threats to validity.

73
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6.1. Motivation and objectives

The inability to distinguish bot accounts from humans in GitHub has lead to the
proposal of several bot identification approaches (Golzadeh et al., 2021b; Dey et al.,
2020a; Golzadeh et al., 2020; Abdellatif et al., 2022; Liao et al., 2023). However, each
approach has specific shortcomings, such as focusing on a limited subset of activities,
the need for a substantial amount of API queries or data to be downloaded, the use
of computationally costly features to identify bot accounts, or even the absence of
a publicly available tool or script to execute the approach on recent accounts and
repositories. These limitations make existing bot identification approaches difficult to
use in practice for identifying large sets of contributors, highlighting the need for a bot
identification tool that can be used at scale. Therefore, this chapter completes Goal
2 of this thesis. It is based on our scientific article published in the Journal of Systems
and Software (Chidambaram et al., 2025). Specifically, this chapter addresses three
research objectives:

O1 Creating a ground-truth dataset of bots and humans. Developing a new bot
detection approach requires a ground-truth dataset containing a large amount of
humans and bots. The construction of a new dataset is motivated by the fact that
older existing datasets are either restricted to a limited set of event types, or not
sufficiently accurate. Also, creating such a dataset takes time and effort. We propose
a manually curated ground-truth dataset of 2,150 contributors that were active on
GitHub as of 3 May 2024. This dataset contains 1,115 humans and 1,035 bots (of
which 242 are bot actors for GitHub Apps or internal automation services and 793
are bot accounts).

O2 Identifying the limitations of existing bot identification approaches. We found
four GitHub bot identification approaches in the research literature that can be ap-
plied in practice, either because they rely on simple heuristics that are easy to im-
plement; or because they come with a documented implementation or even a directly
installable and usable tool. We study the internal workings of each approach and
identify their limitations. We execute these approaches on the ground-truth dataset
to compare their performance in terms of precision, recall and F1 score. We also com-
pare their efficiency in terms of amount of data downloaded, time taken to execute
and number of required GitHub API queries.

O3 Creating a bot identification model based on activity sequences. To overcome the
limitations identified in O2 we propose BIMBAS, a novel binary classification model
based on activity sequences of GitHub contributors. BIMBAS relies on a wide range
of features extracted from the contributor activity sequences to accurately detect
bots. BIMBAS makes use of Gradient Boosting model and achieves a performance
comparable to state-of-the-art bot identification approaches.
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6.2. Creating a ground-truth dataset of bots and hu-
mans

Our first research objective is to create a ground-truth dataset of active bots and
humans that will serve as the basis for creating a new bot identification model (O3).

To reach objective O1, we started from three existing data sources to increase the
likelihood of finding bots. We complemented this with the top contributors of several
popular repositories. Since we aim to use the ground-truth dataset as a basis for a
bot identification model (objective O3) based on contributor activity sequences, we
impose as an inclusion filter that contributors need to have been recently active on
GitHub.1

To ensure the accuracy of the ground-truth dataset we only include contributors
that are manually checked by two raters. To do so, we applied a multi-rater labelling
process to determine the contributor type. Two raters independently inspected the
contributors’ GitHub profiles, as well as the activities they performed on GitHub.
Based on this information they labelled the contributor as either bot or human and
discussed together in case of disagreement. If not enough information was available
to come to a decision, the account was discarded.

As a starting point for the new ground-truth dataset we relied on the dataset
presented in Section 5.1, initially containing 350 bots and 620 humans that were
manually labelled. Applying the inclusion filter we retained 271 bots and 501 humans.

To further complement the ground-truth dataset, we considered the dataset used
by Wyrich et al. (2021) in the context of an empirical study of the difference between
bots and humans in the proportion of PRs being merged by them. They proposed a
dataset of 4,654 bots, but a large majority of them (86.1%) did not pass the inclusion
filter. Following the multi-rater labelling process we manually labelled the remaining
645 contributors, resulting in 506 bots and 139 humans.

Cardoen et al. (2024) provided a dataset of the commit histories of GitHub Actions
workflow files in more than 32,000 repositories. The dataset contains the names
of more than 62,000 contributors. Given the automated nature of GitHub Actions
workflows, we expect this dataset to contain many bots. Ignoring all the contributors
that were no longer active, we started by analysing all the contributors having the
substring “bot” in their name. Following the multi-rater labelling process, we identified
178 bots and 45 humans. To further expand our list of bots, we applied a state-of-
the-art identification tool proposed by Abdellatif et al. (2022) on randomly selected
contributors. Considering only the contributors identified as bots, we followed the
multi-rater labelling process until we reached 72 bots (leading to a total of 250 bots).
We complemented them with 205 humans to reach an equal amount of 250 humans.

Section 1.4 reported that many bots are among the top contributors in GitHub
repositories. Driven by this insight, we selected 10 popular GitHub repositories known
by the authors2 and analysed the top 30 contributors (as reported by GitHub) in each

1The exact definition and rationale of “active” will be provided in Section 6.4.1.
2Each of the considered repositories contained more than 500 watchers, more than 8k forks, and

more than 25k stars.
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of them. After ignoring duplicates and removing contributors who are no longer active,
we followed the multi-rater labelling process and identified and included another 8 bots
and 225 humans in our dataset.

Table 6.1: GitHub contributors included in the ground-truth dataset.

data sources total #bots #humans
1. Chidambaram et al. (2023a) 772 271 501
2. Wyrich et al. (2021) 645 506 139
3. Cardoen et al. (2024) 500 250 250
4. Top contributors in 10 popular GitHub repositories 233 8 225
total 2,150 1,035 1,115

Table 6.1 summarises the final ground-truth dataset we obtained after following all
these steps. Overall, the dataset includes 2,150 contributors, of which 1,115 humans
and 1,035 bots. 791 of these bots are bot accounts, while the remaining 242 are bot
actors for GitHub Apps or internal automation services. It has been made publicly
available at https://zenodo.org/records/12588134 to be used by researchers and
practitioners.

6.3. Performance limitations of existing bot identifi-
cation approaches

Research objective O2 aims to compare the performance and efficiency of the most
prominent approaches mentioned in Chapter 3 in order to identify their main limita-
tions. Based on these limitations, objective O3 (that will be presented in Section 6.4)
will come up with an improved bot identification model that mitigates the identified
limitations.

6.3.1 Excluded bot identification approaches

Section 3.2 provided an overview of the bot identification approaches for GitHub that
have been proposed in the scientific research literature. For practical reasons, we only
included the following approaches in our comparison: NBH, BoDeGHa, BoDeGiC and
BotHunter.

We excluded BIMAN (Dey et al., 2020a) since it requires as input specific files that
need to be obtained from the World of Code (Ma et al., 2021) dataset. This dataset
contains the commits, blobs, trees and folders of open-source git software repositories.
However, World of Code is not publicly available since access should be granted on
an individual basis. Because of this practical limitation, we could not include BIMAN
in our comparison.

We excluded BDGOA (Liao et al., 2023) since we did not find any mention of
a replication package, dataset or executable tool that could be used to replicate or
evaluate the proposed model. As such, we were not able to replicate the approach
and could not include it as part of our comparison.

https://zenodo.org/records/12588134
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6.3.2 Experimental setup
To compare the selected bot identification approaches, we will use a test set cor-
responding to 40% of the contributors contained in the ground-truth dataset. The
remaining 60% of contributors are part of the training set that is reserved for training
the new BIMBAS model that will be proposed in O3. We use stratified splitting to
preserve the proportion of bots and humans in the training and test set. Overall, the
training set includes 621 bots and 669 humans, whereas the test set includes 414 bots
and 446 humans.

Note that some approaches (BoDeGHa and BoDeGiC) work at the repository level,
i.e., they require as input a repository and optionally a set of contributor names to
identify which of the repository contributors are bots. By default, all contributors to
the given repository will be analysed. If a contributor is active in multiple repositories,
the prediction made by these approaches may depend on the repository that has been
selected for analysis. For our experiment we selected the repository on which the
contributor was the most active recently based on the GitHub REST API’s events
endpoint.

To evaluate the performance of the considered bot identification approaches, we
rely on the usual metrics of precision (P), recall (R), F1-score (F1) and their weighted
counterparts. The use of the weighted variant is motivated by the fact that our dataset
is slightly imbalanced (51.9% humans and 48.1% bots).

Table 6.2 summarises the performance metrics for each considered bot identifica-
tion approach. We additionally report the number of “unknown” contributors, i.e.,
those contributors whose type could not be determined because of intrinsic limitations
of the considered approach. The presence of unknown contributors has a direct effect
on the recall: a higher number of unknowns will lead to a lower recall.

Table 6.2: Performance of considered bot identification approaches on 860 contribu-
tors.

bots humans weighted
approach P R F1 unknown P R F1 unknown P R F1
NBH .803 .671 .732 0 .735 .848 .788 0 .768 .763 .761
BoDeGHa .918 .512 .657 169 .861 .457 .597 223 .891 .486 .629
BoDeGiC .812 .271 .406 278 .747 .159 .262 349 .785 .224 .346
BotHunter .967 .928 .947 1 .937 .971 .954 0 .952 .950 .950

Table 6.3: Efficiency of considered bot identification approaches on 860 contributors.

approach data downloaded time API queries
NBH - 0.01 sec -
BoDeGHa 3.83 GB 7.7 h 10,222
BoDeGiC 23.3 GB 23.1 h -
BotHunter 0.261 GB 20.8 h 37,240

Table 6.3 reports on the efficiency of the considered approaches in terms of amount
of data downloaded and execution time. Each approach was executed on the same
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system with an Intel Xeon W-1290P 3.7 GHz CPU processor running Fedora 34
(Server Edition). The downloaded data is measured using the network monitoring
tool NetHogs (version 0.8.7). We also count, for those approaches relying on GitHub,
the number of REST API queries used. Such information is quite relevant, since
GitHub imposes an API rate limit of maximum 5,000 queries per hour. Exceeding
this limit results in a waiting time until the query limit is reset by GitHub. For the
approaches that use the GitHub REST API, we report on this waiting time.

6.3.3 Name-Based Heuristic

The name-based heuristic (NBH) naively identifies a contributor as bot if the sub-
string “bot” appears somewhere in its name. However, in Section 4.1.3 (Table 4.1 on
page 45), we executed this approach on 540 contributors belonging to 27 repositories
and obtained a recall of R = 0.520 for detecting bots. This reveals an important
limitation of this heuristic, namely that it yields many false negatives, i.e., bots that
do not contain the substring “bot” in their name (e.g., bors, micronaut-build, id-jenkins,
strapi-cla). Conversely, this heuristic leads to false positives when humans have the
string “bot” as part of their name. For example, the last names Cabot and Abbott are
not uncommon for humans. For instance, in our dataset presented in Section 6.2, NBH
falsely identified 68 humans as bot due to the presence of “bot” in their name, leading
to a precision of P = 0.803 for bots. Line NBH of Table 6.2 summarises the perfor-
mance results, with an overall weighted precision P = 0.768 and recall R = 0.763,
confirming the presence of many false positives and false negatives.

From Table 6.2, one can observe that the recall of R = 0.671 for bots is higher
than the recall of R = 0.520 that was observed in Table 4.1. This is because the
recall for NBH depends only on the proportion of bots that have “bot” in their name.
So, the recall reported for this approach in Table 6.2 is an overestimation since, by
construction, our dataset (in Section 6.2) contains a higher proportion of such bots.

NBH is extremely efficient in time and memory. Since it only relies on contributor
names, it does not require any other data to be downloaded or any API queries to be
executed, implying that bots can be identified almost instantly.

6.3.4 BoDeGHa

As presented in Section 3.2.1, Golzadeh et al. (2021b) developed BoDeGHa, a bot
identification tool that relies on the repetitiveness of contributors comments to identify
bots. A limitation of BoDeGHa is that it restricts itself to issue and PR comments,
making it unable to detect bots that do not engage in such activities. Even when
a contributor is engaged in such activities, BoDeGHa requires at least 10 comments
(by default) to provide a prediction. This explains why BoDeGHa could not give a
prediction for 392 contributors (169 bots and 223 humans) during its execution on
the test set (see Table 6.2).

While evaluating BoDeGHa, we identified some overly restrictive condition in its
source code to avoid exceeding the API rate limit. We modified the code to relax this
condition in order to optimise BoDeGHa’s execution and created a PR that has been



79

merged into BoDeGHa’s GitHub repository.3 We executed this improved version of
BoDeGHa with its default parameters on the contributors of the test set. It took 7.7
hours (464 minutes), required 10,222 API queries and downloaded 3.83 GB of data
to provide its predictions. A reason for BoDeGHa’s high execution time is that it de-
pends on the combination of features that are computationally costly (calculating and
comparing Levenshtein and Jaccard distanceof text fragments). Overall, BoDeGHa
achieved a weighted precision of P = 0.891. Since BoDeGHa could make a prediction
only for 468 contributors, it achieved a very low recall of R = 0.486.

6.3.5 BoDeGiC

In a follow-up work, Golzadeh et al. (2020) developed BoDeGiC an alternative to
BoDeGHa as discussed in Section 3.2.1. BoDeGiC uses an approach that is similar to
the one of BoDeGHa, but applied to git commit messages rather than to issue and
PR comments. Unlike BoDeGHa, BoDeGiC works directly with a given (local) git
repository. It does not take a GitHub repository as input and does not need to use
the GitHub API.

Since cloning all the repositories is time-consuming and requires downloading a
large amount of data, and since BoDeGiC only requires the commit messages, we
decided not to download the git blobs, which are used to store a file’s binary data,
along with the size of that data. To do so, we adapted the git command used to
clone repositories to exclude blobs (git clone –filter=blob:none –no-checkout
<repo>). With this command, for example, the servo/servo repository on GitHub
took only 10.5 seconds and 114MB to be cloned while cloning this repository with all
blobs would have taken 128 seconds and 1.14GB. The process of cloning all considered
repositories took one hour while predicting the type of contributor took 22.1 hours,
so in total it took 23.1 hours to execute and required 23.3GB of data.

BoDeGiC was able to provide a prediction for 233 contributors. It could not
provide a prediction for the remaining 627 contributors (278 bots and 349 humans)
because they do not reach the minimum 10 commits required by BoDeGiC to make a
prediction. Although, BoDeGiC achieved an overall weighted precision of P = 0.785,
it has very low recall of R = 0.224 due to the latter reason.

6.3.6 BotHunter

As described in Section 3.2.1, Abdellatif et al. (2022) proposed BotHunter, a Python
script that executes a bot identification model based on a Random Forest classifier.
Also, as we saw in Section 3.2.2, BotHunter uses variants of NBH as part of its features.

While evaluating BotHunter, we discovered that it retrieves only 30 events per
API call while the GitHub API allows to retrieve up to 100 events at once. We
therefore adapted the source code of BotHunter to retrieve up to 100 events per API
call, thus reducing the number of API queries and reducing its execution time since
the hourly API rate limit is reached less frequently. We created a PR of these code

3https://github.com/mehdigolzadeh/BoDeGHa/pull/25

https://github.com/mehdigolzadeh/BoDeGHa/pull/25
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modifications to the GitHub repository of BotHunter4 which was accepted by the
repository maintainer and is now integrated in the latest release of BotHunter.

We applied this modified version of BotHunter on the contributors of the test
set. With the notable exception of a contributor that no longer exists on GitHub,
BotHunter was able to provide predictions for all the other contributors. Table 6.2
shows that BotHunter exhibits the best performance, reaching a precision of P =
0.952 and recall of R = 0.950. On the other hand, Table 6.3 shows that BotHunter
consumed 37,240 queries, downloaded 261 MB data and took 20.8 hours to provide
the predictions. This long execution time includes the 50 minutes of waiting time due
to the fact that BotHunter exceeded the GitHub API rate limit seven times.

6.3.7 Summary

Many of the considered approaches require, or specifically target, contributors to
be involved (at least) in specific activity types (e.g., committing for BoDeGiC or
commenting for BoDeGHa), making them unable to accurately determine the type of
the contributors that are not involved in these activities. To some extent, deciding
which approach should be used is basically a trade-off between efficiency (at scale)
and performance.

6.4. Creating the BIMBAS bot identification model

We identified the performance limitations of the existing bot identification approaches
in Section 6.3. The goal of the current section is to develop a new model that identifies
whether a contributor is a bot or a human that: (i) exhibits a performance comparable
to the state-of-the-art; (ii) can be used to predict contributors that are involved in
other (or more) activity types than the usual commit-, issue- or PR-related activities;
(iii) requires a low amount of data to be downloaded; and (iv) can efficiently classify
thousands of contributors in limited amount of time. The current section focuses on
requirements (i) and (ii), while (iii) and (iv) will be addressed in Section 7.2.

The current section is structured as follows. Section 6.4.1 explains how to con-
struct activity sequences based on the events provided by GitHub’s REST API events
endpoint. Section 6.4.2 details the features we compute from the activity sequences
and presents their rationale. Section 6.4.3 explains the procedure that we follow to
impute missing values, select the best classification model, and eliminate unimportant
features. Based on the output of this process, we propose BIMBAS, a classification
model distinguishing bots and humans based on their activities. Section 6.4.4 eval-
uates the performance of BIMBAS on the test set. Section 6.4.5 discusses the most
important features contributing to the predictions made by BIMBAS. Section 6.4.6
discusses the misclassified cases. Finally, Section 6.6 summarises the resulting model.

The replication package containing the material for creating and evaluating BIM-
BAS is available online.5

4https://github.com/ahmad-abdellatif/BotHunter/pull/5
5https://github.com/natarajan-chidambaram/BIMBAS_RABBIT_replication_package

https://github.com/ahmad-abdellatif/BotHunter/pull/5
https://github.com/natarajan-chidambaram/BIMBAS_RABBIT_replication_package
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6.4.1 Extracting activity sequences
In order to develop a new bot identification tool that will not require a lot of data and
can consider a wide range of activity types to give a prediction for many contributors,
we propose a novel approach that is entirely based on activity sequences.

At the moment of this study, the events endpoint allowed us to retrieve up to
the last 300 public events that were generated by a contributor during the last 90
days. These low-level events will then be converted to fine-grained activity sequences
using the mapping provided in Section 5.1 (Table 5.1 on page 59). Relying on activity
sequences has two main benefits: (i) events can be retrieved from the events endpoint
using at most three API queries, implying the hourly API rate limit will not be reached
before around 1,666 contributors; and (ii) the activities that can be obtained from
these events cover a wide range of all possible activities a contributor can do on
GitHub, implying that we will be able to categorise more contributors, even those
not active in committing or commenting. This section explains the procedure that we
followed to retrieve the recent events from the events endpoint for all the contributors
present in our dataset and convert them to activities sequences.

For each contributor, we queried the events endpoint, as of 3 May 2024, and
retrieved 376,638 events performed by 2,150 contributors (194,863 by 1,035 bots and
181,775 by 1,115 humans). In this chapter, we ignored all GitHub contributors that
performed less than five GitHub events, as they would not provide enough information
for a bot identification model to make any conclusive decision. Converting the low-
level event types to higher-level activity types following the mapping presented in
Table 5.1 resulted in a total of 337,246 activities performed by the 2,150 contributors
of the ground-truth dataset. 182,218 of these activities were performed by 1,035 bots,
while 155,028 activities were performed by 1,115 humans.

6.4.2 Selecting features
Previous research studies (Kazi Amit et al., 2023; Zhang et al., 2022) showed that
bots are significantly faster than humans in posting the first PR comment as well as
in responding to a PR comment. Also, in Section 5.2, we observed many differences
between the activities made by bots and those made by humans. Based on these
differences we suggested five behavioural features to capture the differences between
bots and humans: the number of activity types, the inequality of number of activity
types across repositories, and the inequality of time between consecutive activities.
In addition to this, we observed a significant difference in the number of repositories
contributed to by bots and humans, and in the median time for them to switch
between repositories.

We took these five features as an initial set of features. We extended this feature
set by considering a wide range of counting metrics related to contributors (e.g., their
number of activities, number of activity types, and number of repositories contributed
to) as well as temporal metrics related to their activity sequences (e.g., duration
between consecutive activities in a repository, and time difference between consecutive
activities of different activity types). Several of these metrics are computed at the level
of a single repository (e.g., NTR) or a single activity type (e.g., NAT) and therefore
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Table 6.4: List of counting metrics considered and the intuition behind them.

Acronym Feature Intuition
NA Number of Activities Since bots are automated agents, we expect them to pro-

duce more activities than humans as they do not suffer
from the same limitations as humans (e.g., the need for
sleep).

NT Number of (activity)
Types

Bots are expected to perform a smaller range of activity
types than humans since they are likely to be specialised
towards specific tasks.

NR Number of Reposito-
ries contributed to

Bots are expected be involved in more repositories than
humans.

NOR Number of Owners
of Repositories con-
tributed to

Many bots are expected to be used by a small number of
repository owners, as they may have been developed or
configured by those owners specifically for their reposi-
tories. Humans on the other hand, have the freedom to
decide which repositories they contribute, regardless of
who owns the repository.

ORR Owner-Repo Ratio =
#NOR
#NR

We expect many bots to be used by small number of
repository owners that use these bots in most of their
repositories. In contrast, human accounts can be freely
involved in multiple repositories belonging to a wide
range of repository owners.

have to be aggregated. Since we do not know in advance which aggregation functions
will be the most useful for the model, we aggregate them using mean and median for
central tendency, std (standard deviation) and IQR (interquartile range) for dispersion,
and Gini for inequality. This leads us to a total of 45 features, of which 5 are non-
aggregated and 8*5 are aggregated features. The entire list of considered features is
reported in Table 6.4 and Table 6.5, together with the rationale for selecting these
features.

6.4.3 Model selection

In this section we explain the process we followed to come up with a classification
model for detecting bots. More specifically, Section 6.4.3 explains how we handle and
impute missing values for the features we selected. Section 6.4.3 details the approach
we followed to identify the best classification model (classifier and its hyperparame-
ters). Section 6.4.3 explains the methodology followed to remove the features that do
not contribute to the predictions made by the classification model.

Handling and imputing missing values

Some machine learning classifiers do not support the presence of missing values. Since
the values of several features cannot be computed for contributors that are exclusively
working in a single repository (e.g., DAAR) or exclusively performing a single activity
type (e.g., DCAT), we apply a two-step process to impute such missing values and
make the model aware of this. More specifically, we (1) replace missing values with the
median value of the corresponding feature, and (2) add a Boolean indicator to signal
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Table 6.5: List of aggregated metrics considered and the intuition behind them. Each
of the metrics below is aggregated using five aggregation functions: mean, std, median,
IQR, and Gini.

Acronym Feature Intuition
NAR Number of Activities

per Repository
The number of activities per repository might be high
for bots as they are intended to perform repetitive tasks
and can work continually without needing breaks.

NAT Number of Activities
per Type

The number of activities per activity type might be
higher for bots as they are specialised in performing spe-
cific activity types in repositories.

NCAR Number of Consecutive
Activities in a Reposi-
tory

Bots do not suffer from context switching, hence they
are expected to switch more easily and more frequently
between different repositories.

NTR Number of (activity)
Types per Repository

We expect bots to be specialised in the activities they do
within repositories, hence the number of activity types
they have across repositories is more likely to be con-
stant.

DCAR Duration of Consec-
utive Activities in a
Repository

If bots tend to switch between repositories, the time
spent in a repository for carrying out consecutive ac-
tivities might be lower than for humans.

DAAR Duration between Ac-
tivities Across Reposi-
tories

Since bots do not suffer from context switching, we ex-
pect them to take less time to have activities in multiple
repositories than humans.

DCA time Difference be-
tween Consecutive
Activities

Since bots are automated scripts, they may be very fast
in carrying out their next activity after the previous one.
The same bot might even work in parallel in multiple,
not necessarily related, repositories.

DCAT time Difference be-
tween Consecutive
Activities of different
Types (in hours)

Since bots do not suffer from context switching, we ex-
pect them to switch more swiftly between activities of
different types.

to the model whether a missing value was imputed (van Buuren, 2012). Combining
the imputed value and the Boolean indicator allows improving model performance
(Van Ness et al., 2023). This two-step process is part of the model pipeline, i.e., the
missing values are computed based on training data only, to avoid the model becoming
contaminated by unseen data. Fig. 6.1 depicts this generic pipeline, the “Estimator”
step abstracting the actual model in use.

Selecting a classification model

To differentiate bots from humans based on their activity sequences, we rely on a
classification model based on a binary classifier since we only have two classes (bot
and human).

We selected seven different classifier types that are commonly used and have the
ability to perform binary classification: Decision Tree (Safavian & Landgrebe, 1991),
Random Forest (Breiman, 2001), Support Vector Machines (Brereton & Lloyd, 2010),
Gradient Boosting (Friedman, 2001), XGBoost (Chen & Guestrin, 2016), Linear Dis-
criminant Analysis (Hastie et al., 2001), and Gaussian Naive Bayes (Chan et al.,
1982).
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Figure 6.1: Generic pipeline for training and evaluating the classification model.
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Figure 6.2: Overview of the process followed to select the best model, eliminate
features and to evaluate BIMBAS.

All the considered classifier types accept a set of hyperparameters that can be
tuned to increase the model performance. We followed a grid-search 10-fold cross-
validation hyperparameter tuning process (Witten & Frank, 2002) to find, for each
classifier type, the values that should be used for these hyperparameters. In total,
we consider 13,021 combinations of classifier types and hyperparameter values. The
process is illustrated in Fig. 6.2 (leftmost gray box).

To train and evaluate these 13K+ models, we used the features corresponding
to activity sequences of each contributor present in the training set. The training
set contains 669 (out of 1,115) humans and 621 (out of 1,035) bots, i.e., 60% of all
the contributors. We followed a 10-fold cross-validation process to have an estimate
on the model’s performance on unseen data. We relied on a stratified shuffle split
strategy to maintain similar proportions of humans and bots within each fold. We
measured the resulting performance of each model based on the usual performance
measures of weighted precision (P), recall (R), F1 score, and area under the ROC
curve (AUC). As the dataset is almost balanced, we used the ROC curve to evaluate
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and obtain a good overview of the model’s performance across different probability
thresholds.

Table 6.6 reports on the results of this process. To allow us to interpret and
compare the performance of the models, we also included NBH as a baseline. Since
we cannot list all the considered combinations, we report for each type of classifier on
the results obtained by the best combination of hyperparameters in terms of weighted
F1 score, as this score reflects the precision and recall of a model through a single,
easy to compare value. Among all considered combinations, Gradient Boosting is the
best overall performer, with the highest F1 score (for bots, humans, and weighted
overall), the highest precision for bots, and the highest AUC score.

Table 6.6: Performance of the best model for each considered classifier type, in de-
scending weighted F1 score.

bots humans weighted
classifier type P R F1 P R F1 P R F1 AUC
Gradient Boosting .923 .939 .930 .944 .925 .934 .934 .932 .932 .970
Random Forest .897 .947 .921 .948 .899 .922 .924 .922 .922 .969
XGBoost .900 .935 .917 .938 .903 .920 .920 .919 .919 .967
Decision Tree .891 .931 .909 .933 .891 .911 .913 .910 .910 .924
Linear Discriminant Analysis .874 .916 .893 .921 .876 .897 .898 .895 .895 .961
Support Vector Machines .820 .806 .812 .823 .833 .827 .822 .820 .820 .833
Gaussian Naive Bayes .865 .597 .705 .710 .912 .798 .785 .760 .753 .893
NBH (baseline model) .765 .669 .714 .725 .810 .765 .744 .742 .740 .739

Eliminating features

We trained and evaluated the models on a set of 45 initial features. However, not all
these features have the same importance during the classification process, and some
of them may be redundant or may contribute little or not at all to the decision of the
model. To remove unimportant features, we rely on the well-known recursive feature
elimination (RFE) technique (Guyon et al., 2002). RFE aims to identify and eliminate
the least important features (i.e., those that do not contribute much to the model
performance) by recursively considering smaller and smaller sets of features. We chose
the best performing Gradient Boosting binary classification model and applied RFE
in a 10-fold cross-validation loop on the training set. At the end of the process, RFE
identified the following seven features that can be removed without any compromise
on the model performance: NR, DCAIQR, NARstd, NTRIQR, NCARmedian, NCARGini,
DCARGini.

6.4.4 Training and evaluating BIMBAS

The grid search cross-validation explained in Section 6.4.3 allowed us to identify the
best classifier type (Gradient Boosting) and its corresponding hyperparameters. In
Section 6.4.3, we identified that 38 features are important for the model to exhibit
good performance. In this section, we introduce, train and evaluate BIMBAS, a “Bot
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Identification Model Based on Activity Sequences”. BIMBAS implements the selected
classifier and its hyperparameters, and takes as input the 38 identified features.

Table 6.7: Performance comparison of BIMBAS against existing approaches on the
test set of 860 unseen contributors.

bots humans weighted
approaches P R F1 P R F1 P R F1
NBH .803 .671 .732 .735 .848 .788 .768 .763 .761
BoDeGHa .918 .512 .657 .861 .457 .597 .891 .486 .629
BoDeGiC .812 .271 .406 .747 .159 .262 .785 .224 .346
BotHunter .967 .928 .947 .937 .971 .954 .952 .950 .950
BotHunter without NBH .984 .587 .735 .722 .991 .836 .848 .797 .787
BIMBAS .883 .911 .897 .915 .888 .901 .899 .899 .899

BIMBAS is trained on the full training set (60% of all contributors). To assess its
performance on unseen data, and therefore to validate BIMBAS, we applied it on the
test set containing the remaining 40% contributors (i.e., 414 bots and 446 humans).
Table 6.7 reports on the results of BIMBAS on this test set. Since the test set is the
same than the one we used in Section 6.3, we also report on the results obtained by
the other bot detection approaches for comparison.

BIMBAS correctly identified most of the bots (377 out of 414) with a precision
P = 0.883 and a recall R = 0.911. Similarly, most of the humans (396 out of 446)
that are present in the test set were correctly identified by BIMBAS with a precision
P = 0.915 and recall R = 0.888. Overall, BIMBAS reaches a precision P = 0.899 and
a recall R = 0.899, making it the second most performant bot detection approach.

However, in Section 6.3.3 we mentioned that the good performance of NBH could
be explained by the high proportion of bots in the ground-truth dataset that have
“bot” in their name. The most important features of BotHunter (e.g., account name
and account login) are variations of NBH, relying on the presence of “bot” or “au-
tomate” (Abdellatif et al., 2022). This is likely the reason why BotHunter correctly
identified 97.7% of the bots that have “bot” in their name, whereas it identified only
66.7% of the bots that do not. To get a better understanding of the actual perfor-
mance of BotHunter on less obvious cases of bot contributors, we executed a modified
version of BotHunter that no longer relies on the presence of “bot” or “automate” to
make its decision.6 The results are provided in Table 6.7 as “BotHunter without NBH”.
As anticipated, this variant of BotHunter has more difficulties to identify bots, with
a decrease of recall for bots from R = 0.928 to R = 0.587, a decrease in overall recall
from R = 0.950 to R = 0.797 and a decrease in overall precision from P = 0.952
to P = 0.848. This confirms that the performance of BotHunter heavily depends on
the NBH-related features to detect bots and is less effective in detecting non-obvious
cases of bots. On the other hand, BIMBAS makes no distinction between contributors
based on their names, and bases its decision exclusively on the activity sequences. As
such, its performance does not depend on the presence of “bot” in the name, nor of
any other substring.

6It did not suffice to simply change the names of those contributors, since BotHunter requires the
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6.4.5 Feature importance

In order to identify the most contributing features (among the 38 remaining ones), we
applied the permutation importance (Breiman, 2001) technique on the test set. This
model inspection technique measures the importance of each feature by randomly
shuffling the values of one feature at a time, and measuring how this affects the
performance of the model. We applied this technique in a 10-fold cross-validation
setting on the test set, meaning that each feature is shuffled 10 times and the resulting
F1 scores are aggregated.

Table 6.8: Top five important features for distinguishing bots from humans in test
set, reporting their median values and effect size.

median effect size
acronym feature bots humans δ interpretation
NT number of activity types 4.0 10.0 .725 large
NOR number of owners of repositories con-

tributed to
1.0 4.0 .554 large

DCATmedian median time difference between consecu-
tive activities of different types

0.003 h 0.125 h .482 large

NATmedian median number of activities per type 29.5 6.0 .676 large
NATmean mean number of activities per type 45.0 14.9 .703 large

Table 6.8 reports on the 5 most important features, i.e., on the 5 features that
have the higher impact in terms of F1 score when shuffled. This table also reports
on the median value of these features, distinguishing between bots and humans. To
determine whether there is a statistically significant difference between bots and hu-
mans for these features, we performed Mann-Whitney U tests (Mann & Whitney,
1940). The null hypothesis, stating there is no difference between the two popula-
tions, was consistently rejected with a significance level α = 0.001 after controlling
for family-wise error rate with the Bonferroni-Holm method (Holm, 1979). The effect
size of these tests, based on Cliff’s δ (Cliff, 1993), reveals a large difference for these
features between bots and humans.

6.4.6 Analysing the misclassifications

The evaluation of BIMBAS revealed that is performing well on the test set. Never-
theless, BIMBAS misclassified 37 out of 414 bots as humans (FN) and 50 out of 446
humans as bots (FP). We manually tried to find possible reasons for these misclassi-
fications.

A first observation was that many misclassified contributors performed very few
activities. For example, eclipse-metro-bot and arduino-ci-script-bot are bots that re-
spectively have only 6 and 8 activities. This lack of data makes it difficult for BIMBAS
to determine if their behaviour is closer to humans or bots. To quantify the impact of
the number of activities on misclassifications, we measured the proportion of misclassi-
fied contributors in function of the number of withheld activities for each contributor.

exact contributor name to retrieve its data.
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Fig. 6.3 shows this proportion, revealing that a lower number of activities coincides
with a higher proportion of misclassified contributors. For instance, when applied on
the latest eight activities of each contributor, 25% of the contributors are misclassified.
When applied on the latest 25 activities, 16% of the contributors are misclassified.
In contrast, the proportion of misclassified contributors does not exceed 10% starting
from 107 activities.
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Figure 6.3: Proportion of misclassified contributors in function of number of consid-
ered activities.

Another reason for misclassified bots is that they are taking a long time to switch
between activity types (DCATmedian), although they are involved in multiple activity
types (NT) and the mean and median number of activities per activity type (NATmedian
and NATmean) is similar to that of humans. For example, bot-gradle is a bot that
performed 244 activities belonging to 9 different activity types, but its DCATmedian is
0.307 whereas its NATmedian and NATmean are 7 and 21.375 respectively. Comparing
these values with the corresponding median for bots and humans in Table 6.8 conveys
that it is difficult for BIMBAS to classify them as bots.

We also found instances of misclassified bots whose main or only purpose is to
mirror (e.g., migrate, copy-paste or translate) human activities coming from other
sources (e.g., another repository or another bug tracking system). For example, zx2c4-
bot is a mirroring bot that creates and deletes tags and branches, closes PRs, and
pushes commits to GitHub that were made on an external git repository. Such bots
are difficult to distinguish from humans, given that each of their mirrored activities
actually originate from some human activity.

Another reason for misclassifying humans is that they may be involved in very few
activity types. One of the misclassified humans performed 300 activities belonging to a
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single activity type (pushing commits). While it is expected to have humans involved
in this activity type, it is unlikely for them to be involved in only a single activity type,
since the median number of activity types for humans is 10 (see NT in Table 6.8).
Indeed, the test set included only one human contributor that was exclusively pushing
commits, so it can be considered to be an outlier in the class of humans. Another
observation is that six misclassified humans have a median time difference between
consecutive activity types (DCATmedian) of 0.001h, which corresponds more to bot
behaviour than to human behaviour (see in Table 6.8).

6.5. Threats to validity

We follow the structure recommended by Wohlin et al. (2012) to discuss the main
threats to validity of our research, and their potential consequences.

Construct validity examines the relationship between the theory behind the ex-
periments performed and the observations found. This threat is mainly related to
correctness of the dataset used in the experiments. A possible such threat is that
contributors in the ground-truth are not labelled correctly. This situation is very
unlikely to happen since we followed a multi-rater labelling process that resulted in
an almost perfect inter-rater agreement (Cohen’s kappa κ = 0.91 (Jacob, 1960)).
However, we cannot exclude that the ground-truth dataset contains so-called mixed
accounts (i.e., accounts having a combination of human and bot activities) (Cassee
et al., 2021).

Another threat to construct validity is that the ground-truth dataset is biased, by
construction, towards bots having “bot” in their name: 67.1% of all bots in the dataset
(i.e., 694 out of 1,035) contain this substring in their contributor name, which is likely
considerably more than what one could expect in practice. While this higher propor-
tion of bots having “bot” in their name cannot affect the performance of BIMBAS since
it does not rely on this feature to detect bots, it may have led to an overestimation
of the performance of bot identification approaches such as NBH and BotHunter that
make use of that feature.

Internal validity concerns choices and parameters of the experimental setup that
could affect the results of the observations. We strived to follow machine learning best
practices during model construction, training, testing and evaluation. We relied on a
state-of-the-art machine learning library (namely sklearn) to conduct the experiments.
As such, our experimental setup is unlikely to have biased the results we obtained.

Another internal threat to validity is the criterion we used to select the reposi-
tories for executing BoDeGHa and BoDeGiC. We selected, for each contributor, the
repository in which the contributor was the most active (in terms of events gener-
ated). A different selection criterion could lead to different performance results and
to a different number of “unknown” predictions. However, none of these approaches
explicitly define guidelines to decide on a repository whenever a contributor is active
in more than one repository.

External validity concerns the degree to which the conclusions we derived are
generalisable outside the scope of this study. The main threat to external validity is
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that BIMBAS was created and evaluated with activity sequences obtained from public
GitHub repositories (because GitHub API only returns public events). Since activ-
ities in private repositories may differ in their type, frequency and order we cannot
make any claims on the performance of BIMBAS on contributors in private reposito-
ries. Similarly, BIMBAS cannot be applied “as is” to other collaborative development
platforms (e.g., GitLab, Gitea or BitBucket). Even though such platforms are mostly
based on the same principles, and even if the technical process we followed to create
BIMBAS is likely to be applicable to these platforms, there could be differences in
the APIs, the activity pace, activity types of contributors, and the ways bots interact
with repositories and contributors. As a consequence, it is very likely that a new
classification model would need to be trained to take these differences into account.

Conclusion validity concerns whether the conclusions derived from the analysis
are reasonable. Since our conclusions are mostly based on quantitative observations
and are supported by the usual performance metrics to evaluate machine learning
classifiers, they are unlikely to be affected by such threats.

6.6. Summary

This chapter completed Goal 2 of this thesis by developing a new bot identifica-
tion model that leverages a wide range of activity types performed by contributors in
GitHub. First, we created a new manually labelled ground-truth dataset of bots and
human contributors in GitHub. Second, with the help of a test set (40% of contribu-
tors) that was not used to train the new bot identification approach, we identified the
limitations of existing bot identification approaches in terms of their performance
and efficiency. Third, we proposed BIMBAS, a novel bot identification approach
based on activity sequences. To create BIMBAS, we followed a grid-search 10-fold
cross-validation on the training set (60% of contributors) and compared the results
obtained by 13K+ combinations of classifiers and their hyperparameters. Through
this process, we found a Gradient Boosting model and its associated hyperparameters
to be the top performer. We applied the recursive feature elimination technique to re-
move unimportant features, retaining 38 features. We then evaluated the performance
of BIMBAS on the test set.

Overall, the performance of BIMBAS is comparable to the best existing bot iden-
tification approaches, making it a good candidate for performing large scale analysis
and to be implemented as part of a tool. This will be the goal of the next chapter.



CHAPTER 7

Using BIMBAS in practice

This chapter addressesGoal 3 of this thesis. Chapter 6 showed that BIMBAS exhibits
good performance in identifying GitHub bot contributors. In this chapter, we use
BIMBAS in practice (i) by performing a large scale analysis, and (ii) by integrating
BIMBAS as part of a command-line tool to enhance its usability.

There has been little research on how GitHub’s automation mechanisms (presented
in Chapter 2) are used in the context of large software ecosystems composed of a
large community of collaborating contributors. Conducting such studies helps to
understand the roles and dynamics of bots in large software ecosystems. Section 7.1 is
based on my publication (Chidambaram & Mens, 2025) and uses BIMBAS to conduct
a large scale analysis of bots in NumFOCUS , a large open-source software ecosystem
for data science. This section reveals the differences in activity patterns between
bots and humans on the one hand, and between different bot categories on the other
hand. Section 7.2 is based on our publications (Chidambaram et al., 2025, 2024) and
integrates BIMBAS into RABBIT an open-source command-line tool that takes in a set
of contributor names and determines their type. This section details the functioning
of RABBIT and shows that by an order of magnitude more efficient than the bot
identification approaches covered in Section 6.3.

91
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7.1. A large scale analysis with BIMBAS

This section partly addresses Goal 3 of this thesis. It is based on my peer-reviewed
publication in the International Workshop on Bots in Software Engineering (BotSE)
2025 (Chidambaram & Mens, 2025). This section presents a first-of-its-kind quanti-
tative observation of how bot mechanisms (bot accounts, GitHub Apps and GitHub
internal automation services) are used in a large OSS ecosystem hosted on GitHub.
We selected as case study NumFOCUS ,1 a non-profit organisation supporting and
promoting over 50 open-source software projects for data science at the moment of
writing this dissertation. It includes very popular projects such as NumPy, Pandas,
Matplotlib and so on.

To analyse its community of contributors, we rely on the public GitHub events
made by contributors having participated in repositories belonging to the GitHub
organisations of NumFOCUS projects. During three months, we observed their
GitHub events to quantify the specific activity types of contributors as defined in Sec-
tion 5.1. We explore and identify differences in activity patterns between the three
GitHub bot mechanisms (GitHub internal automation services, GitHub Apps, and
bot accounts) and the human contributors. A replication package can be found on
https://doi.org/10.5281/zenodo.14415595.

7.1.1 Extracting activity sequences for contributors

To observe the use of bots in NumFOCUS , we rely on the public events in all reposito-
ries of GitHub organisations associated to NumFOCUS projects. From these public
events, we identify all involved contributors (bots and humans). We exclude any
events made by these contributors in repositories and organisations that do not be-
long to NumFOCUS , as they are considered out of scope. We consider a three-month
observation period from July to September 2024.

We identified 60 GitHub organisations corresponding to NumFOCUS projects, and
the 1,626 GitHub repositories belonging these organisations. For example, the dataset
contains public events for all 12 GitHub repositories for the numpy GitHub organisa-
tion corresponding to the NumPy project.2 We excluded the conda-forge organisation
containing tens of thousands of repositories for the packages (called recipes) of the
Conda package manager, since we consider it to be a separate packaging ecosystem.

As a data source, we relied on the dataset provided by Hourri et al. (2025). It
contains all 358,451 raw public events performed by 21,957 contributors in the identi-
fied repositories during the observation period. 14,351 contributors (65%) performed
only a single event, of which 9,788 corresponded to Starring repository and 2,072 cor-
responded to Forking repository. We decided to exclude such peripheral contributors
that contribute very little to the ecosystem. To do so, we removed a very long tail of
20,445 contributors (93.1%) involved in less than 10 events in NumFOCUS reposito-
ries. This resulted in a filtered dataset of 322,317 events (89.9%) performed by 1,512

1https://numfocus.org
2See https://github.com/orgs/numpy/repositories.

https://doi.org/10.5281/zenodo.14415595
https://numfocus.org
https://github.com/orgs/numpy/repositories
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contributors.

From the obtained events, we derived more meaningful higher-level activity types,
using the mapping provided in Section 5.1.2. The activity dataset contains 282,921
activities belonging to 23 different activity types, performed by 1,512 contributors in
1,315 repositories of 59 GitHub organisations.

7.1.2 Bot detection

Our aim is to explore differences in activities between various bot mechanisms and
human contributors participating to NumFOCUS organisations and repositories on
GitHub. This requires identifying the type of each contributor.

Determining bot actors corresponding to GitHub Apps or internal automation
services is easy. As explained in Section 3.2.2, the GitHub REST API users endpoint
marks their type as “Bot”, and their account name always ends with the ‘[bot]’ suffix.
In this way, we identified 4 internal automation services and 13 GitHub Apps.

Bot accounts are considerably more difficult to identify. The users endpoint
marks their type as “User”, making them indistinguishable from human accounts.
Researchers have therefore proposed heuristics and classification models for bot iden-
tification (see Section 3.2). Based on the comparison of bot identification approaches
in Section 6.4.4 (Table 6.7 on page 86) we combine the best three to identify bots:
a name-based heuristic, BIMBAS and BotHunter. We started with the name-based
heuristic to identify bots, by checking if their lowercased account name contains the
string “bot”. This resulted in 20 potential bot accounts. We manually excluded false
positives (e.g., common human surnames such as “Abbot”), resulting in 19 confirmed
bot accounts. We processed the remaining user accounts using BIMBAS developed
in Chapter 6. As BIMBAS is based on a Gradient Boosting classifier, it provides a
probability score for each contributor, indicating the likelihood of being a bot and the
likelihood of being a human. We retained only those 817 accounts for which BIMBAS
provided a probability score of at least 0.85 for either type. We applied BotHunter
(Abdellatif et al., 2022) on them to check whether its prediction agreed with BIMBAS.
In case of disagreement, we manually verified whether the account should be classified
as bot. This allowed us to identify 15 more bot accounts, leading to a total of 34 bot
accounts (of which 19 containing “bot” in their name) and 802 human accounts.

Table 7.1 provides the characteristics of the final dataset of all 853 considered
NumFOCUS contributors and their associated activity sequences, grouped by con-
tributor type: 4 internal automation services, 13 GitHub Apps, 34 bot accounts and
802 human accounts. While 94% of all considered contributors are humans (802 out
of 853), they account for only 53.4% of all activities (133,173 out of 249,185). This
suggests that bots are more active, which is confirmed by their median number of
activities, that is considerably higher than for humans.
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Table 7.1: Breakdown of contributor types in dataset.

internal auto- GitHub bot human
mation services Apps accounts accounts all

#contributors 4 13 34 802 853
#activities 91,381 4,859 19,772 133,173 249,185

median #activities 1,116 115 104 56 58
#repositories 414 239 234 1,108 1,169

median #repositories 84 5 2 4 4
#organisations 55 46 45 58 59

median #organisations 24.5 4 1 1 1

7.1.3 Prevalence of bots in NumFOCUS repositories and or-
ganisations

58 of the 59 considered NumFOCUS organisations (98.3%) automate their tasks with
bots. Only the Open-MBEE organisation (an open source collaborative engineering
system) does not use any bots to automate its tasks. The identified bots are involved in
583 of the 1,169 repositories (49.9%) belonging to these organisations, and they are the
most active contributor in 155 of them (26.6%). The median values in Table 7.1 reveal
that internal automation services and GitHub Apps participate in more organisations
and repositories than human accounts. In contrast, bot accounts tend to restrict
themselves to fewer repositories belonging to a single organisation.

To observe the difference in number of activities, repositories and organisations
that contributor types are involved in, we plot the distribution of all contributors
(per contributor type) in Fig. 7.1a, Fig. 7.1b and Fig. 7.1c respectively with boxen
plots (a.k.a. letter-value plots (Hofmann et al., 2017)) as they provide more detailed
information about the distribution than regular box plots. The procedure followed by
boxen plot to represent the data is explained in Section 5.2.2. We excluded the four
internal automation services as there are not enough to have a meaningful visualisa-
tion.

The distributions are skewed for the number of repositories contributors are in-
volved in, with a median of five repositories for Apps, two for bot accounts, and four
for human accounts. The 75th percentile confirms that Apps are involved in consid-
erably more repositories, with a value of 19 compared to only 5.5 for bot accounts
and six for human accounts. This is likely because Apps are readily available and
can be installed easily from the GitHub Marketplace to automate activities in any
repository.

The findings for the distributions of the number of organisations are similar to
those for repositories, with bot accounts and human accounts being involved in very
few organisations (median of 1), and Apps being involved in considerably more or-
ganisations (median of 4 and 75th percentile of 10).

Focusing on the four internal automation services we observe that: (1) github-
actions[bot], acting on behalf of the GitHub Actions workflows used by a repository,
accounted for 89,117 activities in 319 repositories of 45 organisations; (2) depend-
abot[bot] that automates dependency updates had 1,937 activities in 163 repositories
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Figure 7.1: Boxen plots of number of (a) activities (y-axis is limited to 2,500 to
enhance readability), (b) repositories, and (c) organisations for NumFOCUS contrib-
utors grouped by contributor type.

of 47 organisations; (3) github-merge-queue[bot] that provides a merge queue for PRs
had 295 activities in four repositories of a single organisation; and (4) github-advanced-
security[bot] that improves and maintains code quality and security performed 32
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activities in five repositories of four organisations.
Among the 13 GitHub Apps, the three most active ones were: (1) codecov[bot] that

reports on code coverage, with 1,683 activities in 88 repositories of 25 organisations;
(2) pre-commit-ci[bot] that provides a CI service for pre-commit framework, with 1,509
activities in 133 repositories of 26 organisations; (3) renovate[bot] that automates
dependency updates, with 530 activities in five repositories of three organisations.

Among the 34 bot accounts, the three most active ones were: (1) editorialbot with
13,346 activities (of which 6,419 (48.1%) are of type Commenting issue) in only 4
repositories belonging to the openjournals organisation; (2) bioc-issue-bot with 841
activities (of which 768 (91.3%) are of type Commenting issue) in a single repository
belonging to the Bioconductor organisation; (3) conda-bot with 673 activities (of which
332 (49.3%) are of type Pushing commit) in 26 repositories belonging to the conda
organisation.

Finding: Bots are prevalent in NumFOCUS , contributing to 98% of its organ-
isations and 50% of its repositories, and being the most active contributors in
27% of these repositories. Human accounts and bot accounts tend to restrict
their activities to few organisations. editorialbot and bioc-issue-bot are the most
active bot accounts, being involved mostly in Commenting issue. GitHub Apps
tend to be involved in more repositories belonging to more organisations than
bot accounts. The most active bots are the GitHub internal automation ser-
vices github-actions[bot] and dependabot[bot].

7.1.4 Which activity types are contributors involved in?

While RQ1 focused on the number of repositories and organisations, RQ2 focuses
on the number of activities and activity types per contributor type. Table 7.1 re-
vealed that bots have a higher median number of activities than human accounts.
Fig. 7.1a reveals a skewed distribution of number of activities performed by contribu-
tors, grouped by contributor type. To determine whether different contributor types
tend to be involved in different types of activities in NumFOCUS , (i) we quantify,
per contributor type, the proportion of all activities carried out per activity type as
visualised in Fig. 7.2, and (ii) we analyse the difference in proportion of activities per
activity type group between humans and bot contributors in Fig. 7.3 and between dif-
ferent internal automation services, Apps and bot accounts in Fig. 7.4. We grouped
activity types into four different groups, namely PR, issue, repository and commit for
ease of visualisation and understanding.

For each contributor type there are outliers that are considerably more active than
all others. Two human accounts were involved in 12,321 and 5,206 activities (respec-
tively 9.3% and 3.9% of all human activities). A single bot account, editorialbot was
responsible for 13,346 activities (67.5%) of all activities performed by bot accounts.
codecov[bot] and pre-commit-ci[bot] were responsible for 1,683 and 1,509 activities
(34.6% and 31.1% of all activities performed by Apps). The internal automation ser-
vice github-actions[bot] was responsible for 89,117 activities, accounting for 97.5% of
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Figure 7.2: Proportion of activity types performed per contributor type. Only activity
types with a high enough proportion of activities are labeled along with the number
of activities of that type.

all activities performed by internal automation services.
Human accounts are involved in all 23 activity types. A single human accounted

for 43.9% of all Pushing commit, an activity carried out by 401 humans. 1,928 human
accounts performed commenting (on issue, PR or PR review) (44.7% of all human
activities). Review-related activities (i.e., Commenting PR changes and Reviewing
code) were virtually absent for bots, while they account for 22.3% of all human activi-
ties. Overall, as observed from Fig. 7.3, humans majorly perform PR-related activities
(52%) compared to that of commit- (20.9%), issues- (20.2%) and repository-related
activities (6.9%).

Bot accounts are involved in 16 activity types. They are mostly Commenting issue
(42% by 10 bots) while this type only accounted for 1.2% of all activities for Apps.
The secondmost frequent activity for bot accounts was Pushing commit (22.3% by 13
bots). Both activity types are predominantly performed by editorialbot, accounting for
77.3% of all Commenting issue and 61.6% of all Pushing commit. Other major activity
types are Creating branch (8.2%), Deleting branch (7.6%), Commenting PR (6.9%),
and Opening PR (5.6%). As observed from Fig. 7.4, bot accounts majorly perform
issue-related activities (45.5%) compared to that of commit- (23.3%), repository-
(16.9%) and PR-related activities (14.3%).

GitHub Apps performed 10 activity types. The most frequent type is Comment-
ing PR, carried out by ten Apps. Five Apps even exclusively performs this activity.
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Figure 7.3: Sankey diagram of the distribution of activities performed by humans and
bot contributors.

This is for example the case for codecov[bot] that accounts for 63.3% of all Com-
menting PR activity performed by Apps, mainly for posting code coverage analysis
reports computed by Codecov. Four Apps are involved in a combination of Creating
branch, Opening PR and Pushing commit. Overall, Apps are majorly involved with
PR (68.1%) related activities compared to that of commit (16.5%), repository (13.6%)
and issue (1.9%) related activities.

Internal automation services are involved in 15 activity types, with Pushing com-
mit being the predominant type (92.3%). As observed in Fig. 7.4 99.8% of this activity
type is due to github-actions[bot] that performed 84,200 Pushing commit activities.
dependabot[bot] is more diverse, being involved in seven activity types, of which 32.6%
Creating branch and 32.3% Opening PR.

Identifying the differences in the proportion of activities performed by different
contributor types was possible only because of our event type to activity type map-
ping presented in Section 5.1. Without this mapping, the conclusions would have
been different. For example, the activities Commenting PR and Commenting issue
would have been grouped under the same event type IssueCommentEvent, and the dif-
ferences in proportion of these activity types between bot accounts and GitHub Apps
would not have been visible. Similarly, Closing PR and Opening PR would have
been grouped under the event type PullRequestEvent, and we would have observed a
different contribution pattern at low-level.
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Figure 7.4: Sankey diagram of the distribution of activities performed by different
internal automation services, Apps and bot accounts.

Finding: Bots are more active than humans. Humans are involved in more
activity types than bots. Bot accounts are involved in more activity types than
Apps. The activity distribution is heavily skewed for all contributor types. In-
ternal automation services are majorly involved with commit-related activities,
while for bot accounts it is mostly issue-related activities, and for Apps and
humans mostly PR-related activities.

7.1.5 Which organisations are contributors involved in?
Similar to Section 7.1.4, we analysed the number of activities per activity type per-
formed by different bot categories in each of the considered NumFOCUS organisa-
tions. This visualisation is given in Fig. 7.5.

We observe that, among the 84,814 Pushing commit activities performed by github-
actions[bot] in NumFOCUS organisations, 75,659 of them (89.2%) are performed in
the Bioconductor organisation. Pushing commit is also the most frequent activity type
(98.8%) performed in Bioconductor, an organisation distributing more than 2,000 R
packages related to computational biology and bioinformatics. As such, it can be
regarded as a package manager of its own, similar to the conda-forge organisation.

We also observed 13,377 activities performed by bots in the openjournals organi-
sation, which aims to collect and share open-source and open-access journals. 99.8%
of its activities are performed by editorialbot, a bot account used for automating the
editorial process of open access journals. A majority (52%) of the activities performed
by editorialbot in openjournals organisation are related to managing issues.

These observations complement the observation in Section 7.1.3 that Bioconductor
and openjournals are the two organisations with the highest number of bot activities.
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Figure 7.5: Sankey diagram of the number of activities performed by different bot
categories in NumFOCUS organisations

In the remainder of this subsection, we continue the analysis while excluding these
“outlier” organisations.

Fig. 7.6 is the modified version of Fig. 7.5 after excluding Bioconductor and open-
journals. We observe that bot activities are now more equally distributed over the
different organisations: each of them involves less than 8.8% of the bot activities,
except for napari that accounts for 21.9% of all bot activities.

Figure 7.6: Sankey diagram of the number of activities performed by different bot
categories in NumFOCUS organisations excluding Bioconductor and openjournals.
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We also redid the analysis of Fig. 7.4 after excluding the Bioconductor and open-
journals organisations. Fig. 7.7 now paints a quite different picture. Among 26,091
activities performed by bots, only 13,440 (51.5%) activities are performed by github-
actions[bot]. Similarly, among the 11,979 Pushing commit activities performed by
bots, 9,137 activities (76.3%) are performed by github-actions[bot]. Also, each bot
category performs a similar number of PR-related activities in these organisations.
3,781 (14.5%) PR-related activities are performed by internal automation services,
3,291 (12.6%) by GitHub Apps and 2,119 (8.1%) by bot accounts.

Figure 7.7: Sankey diagram of distribution of activities per activity type performed
by different bot categories in NumFOCUS organisations excluding Bioconductor and
openjournals.

Finding: Bioconductor and openjournals are the most active organisations in
terms of bot contributions. After removing these organisations, bot activities
tend to be more or less equally distributed across organisations. We also ob-
served that all bot categories contribute more or less equally to PR-related
activity types.

7.2. An efficient bot identification tool

In order to allow researchers and practitioners to use BIMBAS, the activity-based bot
identification model proposed and evaluated in Chapter 6, we propose RABBIT, an
efficient executable command-line tool to detect bots on GitHub. This section com-
pletes Goal 3 of this thesis. It is based on the peer-reviewed publications in the (i)
Journal of Systems and Software (JSS) 2025 (Chidambaram et al., 2025), and (ii) In-
ternational Conference on Mining Software Repositories (MSR) 2024 (Chidambaram
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et al., 2024). Section 7.2.1 introduces RABBIT and explains its functioning. Finally,
Section 7.2.2 evaluates and compares its efficiency against the bot identification ap-
proaches of Section 6.3, showing that RABBIT addresses their main efficiency-related
limitations.

The BIMBAS bot identification model developed in Chapter 6 addresses the effi-
ciency limitations of the other bot identification approaches presented above. This
enables us to proceed integrating BIMBAS into RABBIT in Section 7.2.1 without re-
quiring any modifications to the model.

7.2.1 Implementation of RABBIT

RABBIT is a recursive acronym for “RABBIT is an Activity-Based Bot Identification
Tool”. It provides a command-line interface to use the BIMBAS model trained on the
full dataset. It is released as an open source project on GitHub3 under the Apache 2.0
License. Release 2.2.0 of RABBIT was used for the experiments in the current section.
We published an earlier version of RABBIT, implementing an XGBoost classification
model based on a more limited set of features and trained on a significantly smaller
dataset, in the Data and Tool Showcase Track of the International Conference on
Mining Software Repositories (Chidambaram et al., 2024).

RABBIT can be installed using Python’s package manager pip with pip install
git+https://github.com/natarajan-chidambaram/rabbit.
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Figure 7.8: Schematic representation of RABBIT.

The functioning of RABBIT is schematically represented in Fig. 7.8. The manda-
tory input is a list of contributor names. These names can be provided directly on

3https://github.com/natarajan-chidambaram/rabbit

https://github.com/natarajan-chidambaram/rabbit


103

the command line or through a text file. RABBIT also provides several optional pa-
rameters to change its default behaviour (number of queries, number of events, etc.)
The output can be displayed on the standard output (by default) or stored in a CSV
or JSON file.

RABBIT is a user-friendly and modular tool that has dedicated modules for each
step in the bot identification process: (1) a Python script for extracting the required
fields from events provided by the events endpoint; (2) a Python script for identifying
activities from events; (3) a Python script for computing the features from activities;
and (4) a joblib file containing parameters of the trained BIMBASmodel. For example,
if a user has the raw events (in JSON format) performed by contributors in a specific
set of GitHub repositories, they can write a Python script that can take the events as
input, use the second module to identify the activities, the third module to compute
the features, and the fourth module to predict the type of contributor.

RABBIT will assign one of five possible types to each provided contributor name:
Human, Bot, Organization, Unknown or Invalid. To do so, the tool follows the process
depicted in the middle part of Fig. 7.8. The process starts by querying GitHub REST
API’s users endpoint to extract the value stored in the “type” field. The contributor
type is predicted as Invalid if the contributor name does not exist on GitHub. If the
contributor does exist, but the value in the “type” field is not “User” (e.g., it will be
“Bot” for GitHub Apps, and “Organization” for organisations), this value is provided
as output without any further processing. Only if the “type” field is “User”, RABBIT
queries the events endpoint4 to extract up to 300 events (using at most 3 API queries)
performed by the contributor during the last X days (where X is the retention period
imposed by the API which has been reduced to 30 days as of 30th January 2025). The
contributor type will be Unknown if the number of events obtained does not reach
the minimum threshold set by RABBIT (which is 5 events by default). If enough
events can be retrieved, the extracted event sequence is converted into an activity
sequence (see Section 6.4.1), the features are computed for this activity sequence (see
Section 6.4.2), and the BIMBAS classification model is used to predict the contributor
type as either Bot or Human.

Listing 7.1: Example of RABBIT usage and output.
% r a b b i t -- i nput− f i l e names . t x t

c o n t r i b u t o r type c on f i d e n c e
g i thub−a c t i o n s [ bot ] Bot 1 . 0

johnpb loch−bot Bot 0 .932
open s s l −machine Bot 0 .714

r i t c h i e 4 6 Human 0 .926
j u l i a r e g i s t r a t o r Bot 0 .875

gvanrossum . Human 0.960
goog l e O rgan i z a t i o n 1 .0

r enova t e Unknown −
gh−c i I n v a l i d −

Along with the contributor type, RABBIT also reports on the confidence of its decision.
The confidence score is based on the probability associated to each prediction made
by BIMBAS. Given that BIMBAS provides the probability for a contributor to be a

4https://api.github.com/users/CONTRIBUTORNAME/events
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“bot”, the confidence score is computed as |probability − 0.5| ∗ 2. Listing 7.1 shows
an example of the execution of RABBIT with a list of 8 contributor names provided
through the input file names.txt.

The mandatory input to RABBIT is a GitHub contributor’s login name and/or a
text file with a set of login names. When both are provided, the type for contributor
names that are parsed directly as input parameters are determined before proceeding
with the contributor names provided in the text file. RABBIT has several optional
arguments to change its default behaviour and make it flexible. A full description of
these optional arguments can be obtained by typing rabbit --help in the terminal.
In particular,

--key can be used to provide a GitHub API key. This is mainly useful in order
to make more than 60 queries to the GitHub API. If not provided, the tool will wait
for the API rate-limit to reset, and resumes on its own after that.

--min-events specifies the minimum number of events that need to be considered
for making the prediction. The default value is 5, and the maximum value is 300, as
it corresponds to the maximum number of events provided by the events endpoint
at the time of writing this dissertation.

--min-confidence provides the minimum confidence on the contributor type pre-
diction to stop further querying (default is 1). Querying will be stopped irrespec-
tive of the confidence threshold, if the threshold number of queries provided through
--max-queries is reached.

--max-queries specifies the number of API queries that should be made for each
account, either 1, 2 or 3 (default is 3). If the threshold confidence value provided in
--min-confidence is reached, further querying will be stopped.

--verbose outputs additional information, i.e., the number of events made by the
contributor in GitHub and values of all features that were used to make the prediction.

--csv and --json can be used to save the output as a comma-separated-values
or a JSON file, respectively. If not provided, the results will be directly printed on
the terminal.

--incremental can be used if the user wants to see the results as soon as RABBIT
determined the type for each contributor. This avoids the need to wait for RABBIT
to determine the type of all the provided contributors before proceeding further.

7.2.2 Comparing RABBIT’s efficiency with existing approaches

RABBIT benefits from the good model performance of BIMBAS, while at the same time
addressing all limitations reported in Section 6.3 for the existing bot identification
approaches. For instance, RABBIT supports a wider range of activity types and is
able to determine the type of many more contributors than BoDeGHa or BoDeGiC.

To evaluate the efficiency of RABBIT, we applied it on the same test set of 860
contributor names as those that were used for evaluating the other bot detection
approaches in Section 6.3. To determine the type of these 860 contributors, RABBIT
required 22 minutes and 112 MB of downloaded data. Only 2,426 API queries were
required to make all predictions, staying well below GitHub’s API rate limit of 5,000
queries per hour and per API key. By extrapolation, this means that RABBIT can
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process 1,772 contributors on average before reaching the rate limit.

Table 7.2: Efficiency comparison of RABBIT against existing approaches on the test
set of 860 unseen contributors.

approaches data downloaded time API queries
NBH - 0.01 sec -

BoDeGHa 3.83 GB 7.7 h 10,222
BoDeGiC 23.3 GB 22.1 h -

BotHunter 0.261 GB 20.8 h 37,240
RABBIT 0.112 GB 22 m 2,426

Table 7.2 compares RABBIT’s efficiency to the existing bot identification ap-
proaches, highlighting their limitations in terms of execution time, data downloaded,
and number of required API queries. In terms of execution time, RABBIT is more than
an order of magnitude faster than BoDeGHa (21×), BotHunter (57×) and BoDeGiC
(60×). RABBIT requires considerably less data to be downloaded compared to BoDeGHa
(34×) and BoDeGiC (208×). RABBIT uses an order of magnitude less API queries
than other approaches relying on the GitHub API, namely BoDeGHa (4×) and BotH-
unter (15×).

In summary, RABBIT can be used for considerably larger sets of contributors,
since it runs faster, uses less API queries and requires less data, while still achieving
a performance that is comparable to the best existing bot identification approaches.

7.2.3 Limitations
A first limitation of RABBIT is that it relies only on an account’s public events, since
the API does not provide access to events in private repositories. The same limitation
is applicable to the existing bot identification approaches that depend on the events
performed by a contributor in GitHub. Second, RABBIT only relies on information
obtained from the GitHub REST API’s events endpoint. One could consider ex-
tracting other activity types through additional endpoints, such as issues endpoint,
that provide issue-specific information such as locking, unlocking and labelling issues.
But this would require more API queries, more data to be downloaded, and more ex-
ecution time. Third, since the events endpoint returns the most recent events only,
RABBIT is unable to predict accounts that were not recently active. Finally, as for
any known bot identification tool or even for human raters, it is impossible to predict
so-called mixed accounts that combine both human and bot behaviour (Cassee et al.,
2021).

7.3. Summary and conclusions

This chapter addressed Goal 3 of this thesis by leveraging the practical use of the
BIMBAS bot identification model. While many bot identification approaches have
seen the light in recent years, there is little large-scale empirical evidence on how bots
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act “in the wild” in large ecosystems of interrelated software repositories on GitHub.
We therefore carried out a case study on the NumFOCUS ecosystem for data science.

We performed an empirical analysis of the presence and use of internal automa-
tion services, bot accounts and GitHub Apps in NumFOCUS , a large open source
software ecosystem for data science. Analysing differences in the type and frequency
of activities being performed by these contributors, we observed that bots behave
differently than humans, and that the three types of bots exhibit different activity
patterns. Internal automation services were also observed to be active in consider-
ably more repositories and organisations than other automation mechanisms. These
promising preliminary insights call for the need for more in-depth studies on the use
and complementarity of the different automation practices provided by GitHub. This
may help to uncover the roles and values of such practices during collaborative devel-
opment, and how their use evolves over time and across organisations and projects.
There is also a need to carry out case studies on other large ecosystems, since the
observed findings may not generalise beyond NumFOCUS .

As another way to leverage the practical use of BIMBAS, we implemented RABBIT,
a command-line tool to allow researchers and practitioners to identify bots in GitHub.
RABBIT is more efficient than previous bot identification approaches. While still
achieving a comparable performance, it can be used for considerably larger sets of
contributors since it runs an order of magnitude faster, uses an order of magnitude
less API queries and requires less data to be downloaded.

Based on one’s specific needs, other bot identification approaches could be favored.
If accuracy is not a crucial factor, then NBH should be favored since it is really easy
to implement and the fastest bot identification approach so far. If higher model per-
formance would be preferred over a faster execution time, for example in the context
of some empirical research study, BotHunter might be favored since it had less mis-
classified cases on our test set than RABBIT. However, as explained in Section 6.4.4,
this is likely to be a consequence of the high proportion of bots that have “bot” in
their name in the ground-truth dataset, and the strong reliance of BotHunter on the
NBH heuristic.

Overall, RABBIT offers a simple and easy way to apply BIMBAS in practice, by
processing thousands of contributors per hour while staying under GitHub’s API
hourly rate limit, making it suitable for large scale analysis.



CHAPTER 8

Conclusion

Software developers often join together to develop complex software applications in a
collaborative manner. Such collaborative software development practices have given
rise to development and emergence of social coding platforms. GitHub, the biggest
social coding platform allows developers and maintainers to frequently use automation
mechanisms to automate repetitive, error-prone and effort-intensive tasks.

Chapter 2 presented various GitHub automation mechanisms such as automated
workflows, internal automation services, bot accounts and GitHub Apps, with the
latter three collectively called bots. As discussed in Chapter 1 and Chapter 4, bots
are widely used in GitHub and belong to the most active contributors in GitHub. As
presented in Chapter 3, determining whether a contributor corresponds to a bot or a
human is important in various empirical studies. Many bot identification approaches
have been proposed. However, evaluating the existing approaches in terms of their
performance (Chapter 6) and efficiency (Chapter 7) revealed that these approaches
suffer from various limitations. This thesis provided details on the empirical analyses
that were performed to identify the prevalence of bots in GitHub repositories and
distinguishing behavioural features between bots and humans, datasets of contribu-
tor activity sequences and ground-truth on contributor type that were created, and
the classification models and a tool that were developed or improved for better bot
identification in collaborative software development on GitHub. More specifically,
this thesis provided the necessary support for the following thesis statement:
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Thesis statement:
It is important to identify bots in GitHub repositories. Existing bot identifi-
cation approaches suffer from various limitations. We propose improved bot
identification approaches that overcome these limitations.

The remainder of this chapter is structured as follows. Section 8.1 summarises
the contributions of this dissertation. Section 8.2 discusses the limitations. Finally,
Section 8.3 sheds light on the future research perspectives that this dissertation has
opened up.

8.1. Contributions

This section summarises the contributions that were made through this dissertation.
It describes the datasets that were created, the empirical studies that were performed,
and classification models and the tool that were developed and improved.

8.1.1 Datasets created

As the events provided by GitHub’s REST API events endpoint do not explicitly
correspond to the actual activity types performed by a contributor, in Chapter 5 we
created a mapping to identify higher-level activities from raw public events. Based on
this mapping, we created a dataset of more than 833 thousand activities performed
by 385 bots and 616 humans in GitHub (Chidambaram et al., 2023a). Inspired by the
event to activity mapping, a researcher from our lab developed a more fine-grained
mapping that represents even more closely the actual activities of GitHub contributors
(Hourri et al., 2025).

In order to train and evaluate a machine learning-based bot identification model,
we also created a ground-truth dataset of bots and human contributors in GitHub
(Chidambaram et al., 2025). To do so, we relied on the curated dataset that we
presented in Chapter 5, and the contributors that were used in studies by Wyrich et al.
(2021), Cardoen et al. (2024) and Abdellatif et al. (2022). The resulting ground-truth
consisted of 2,150 contributors of which 1,035 are bots and 1,115 are humans.

8.1.2 Bot identification models

This section highlights the contributions made towards bot identification approaches
in this thesis. Fig. 8.1 summarises these contributions. The leftmost boxes present the
existing bot identification approaches discussed in Chapter 3. The orange coloured
boxes correspond to classification models that are developed in this thesis and violet
coloured boxes represent the tools that are newly developed or improved through a
PR.

In Chapter 4 we compared the performance of five existing bot identification ap-
proaches. For this, we first conducted an exploratory study on the accuracy of these
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BoDeGHa
(Golzadeh et al. (2021b))

BoDeGiC
(Golzadeh et al. (2020))
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identification tools

Newly developed bot 
identification models

Figure 8.1: Contributions to bot identification approaches. Orange coloured boxes
correspond to classification models and violet coloured boxes are tools that are newly
developed or improved through a PR.

approaches on a dataset containing the top 20 most active contributors (in terms of
number of commits) of a set of 27 large GitHub repositories. This preliminary analy-
sis revealed that none of the compared techniques is perfectly effective in detecting all
the bots in the considered set. We hypothesised that combining these five approaches
could lead to an improved bot identification approach. To confirm this hypothesis, we
developed an ensemble classifier, called EnsBoD, that incorporates the capability of
all individual approaches. We evaluated EnsBoD through a 10-fold cross-validation
process, and found that it leads to more accurate predictions (Golzadeh et al., 2022a).

Another contribution of this dissertation is a classification model that takes into
account the activity of contributors in multiple repositories. As BoDeGHa works at
the level of individual GitHub repositories, it led to different predictions for the same
contributor in different repositories and incomplete predictions in the repositories in
which the contributor was not active enough. To improve the predictions of BoDeGHa,
we developed a model, called WoC-P, that relies on the wisdom of the crowd princi-
ple. More specifically, if a contributor involved in multiple repositories has different
predictions, i.e., bot in certain repositories and human in others, we assume that the



110 Conclusion

most frequent prediction (either bot or human) is correct, while the less frequent one
is not. WoC-P improved the bot identification in the considered set of repositories,
suggesting that combining predictions from multiple repositories helps to improve the
performance of BoDeGHa. Additionally, we demonstrated that incomplete predic-
tions, where a model fails to predict an account type, can be addressed by combining
predictions from multiple repositories (Chidambaram et al., 2022).

The final bot identification model we developed was presented in Chapter 6 (Chi-
dambaram et al., 2025). We compared the performance of four existing bot identifi-
cation approaches on the ground-truth dataset of contributors that were created in
Chapter 6. Through this comparison, we found the limitations of these approaches
and highlighted the need for a more practical bot identification approach that:

• Exhibits a good model performance, so that the predictions can be reliable.

• Does not restrict itself to specific activity types.

• Can be applied at scale to classify thousands of contributors in a limited amount
of time, in order to use it for large-scale studies.

• Is future-proof, by remaining applicable even when textual comments provided
by bots (in issues, PRS and commits) become indistinguishable from human
comments, due to the rapid advancement of LLM-based approaches.

Through various intuitions, we created a set of 45 features that correspond to
behavioural features of contributors in GitHub repositories. The set contained five
counting metrics related to contributor activity and eight metrics (e.g., number of ac-
tivities per activity type, and duration between consecutive activities in a repository)
that were aggregated based on the mean, standard deviation, median, interquartile
range and Gini coefficient. Using these features we proposed BIMBAS, a novel binary
classification model for GitHub bot identification based on activity sequences. To
create this model, we followed a grid-search 10-fold cross-validation on the training
set and compared the results obtained by more than 13,000 combinations of classifiers
and their hyperparameters. Through this process, we found Gradient Boosting and
its associated hyperparameters to be the top performing classifier. We applied the
Recurrent Feature Elimination technique to remove features that do not contribute to
the model performance, retaining 38 features. Evaluating the performance of BIMBAS
on the test set revealed a performance comparable to the best existing bot identifica-
tion approaches. This made BIMBAS a good candidate to be implemented as part of
a tool.

8.1.3 Tool development
This thesis also contributed to the research community and open-source community
by improving upon and creating new open-source GitHub bot identification tools.
Fig. 8.1 summarises these contributions.

While evaluating the performance of BoDeGHa in Chapter 6, we identified some
overly restrictive condition in its source code to avoid exceeding the GitHub API rate
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limit. We optimised the code by relaxing this condition and created a PR that has
been merged into BoDeGHa’s GitHub repository by its creator and is now part of the
latest version of BoDeGHa.1

Similarly, while evaluating the performance of BotHunter in Chapter 6, we dis-
covered that it retrieves only 30 events per API call while the GitHub API allows to
retrieve up to 100 events at once. We therefore optimised the source code of BotH-
unter to retrieve up to 100 events per API call, thus reducing the number of API
queries and reducing its execution time since the hourly API rate limit is reached
less frequently. We created a PR of these code modifications to BotHunter’s GitHub
repository2 which was accepted by the repository maintainer and has been integrated
in the latest version of BotHunter.

To allow researchers and practitioners to use the new BIMBAS bot identification
model that was developed in Chapter 6, we created an open-source command-line
tool called RABBIT in Chapter 7. RABBIT takes as input a list of GitHub contribu-
tor names and provides the type of contributor (e.g., bot or human) along with the
prediction confidence. Evaluating RABBIT’s performance on a test set (that was not
used for training BIMBAS) revelaed that RABBIT is more than an order of magni-
tude faster, requires considerably less data to be downloaded, and uses an order of
magnitude less API queries compared to the state-of-the-art. This highlights that
RABBIT can be used to process thousands of contributors per hour without exceeding
the GitHub API rate limit.

8.1.4 Empirical analysis

This dissertation also presented the results that were obtained through empirical
analysis. The preliminary analysis in Chapter 1 revealed that bots play an undeniable
role in large collaborative software development projects. In some repositories, they
belong to the most active contributors in terms of commits. We also observed that
those active bots are not always identified by GitHub as GitHub Apps or internal
automation services since many of them are bot accounts labelled as “User” by GitHub.

Another contribution is a large-scale empirical study on the NumFOCUS ecosys-
tem (on the activities performed by 853 contributors in 1,116 repositories belonging to
59 organisations) through which in Chapter 7 we provided evidence that bots behave
differently than humans, and that the three types of bots exhibit different activity
patterns. We analysed the differences in the type and frequency of activities being
performed by these contributors to identify how bots behave in a large ecosystem of
interrelated software repositories on GitHub.

1https://github.com/mehdigolzadeh/BoDeGHa/pull/25
2https://github.com/ahmad-abdellatif/BotHunter/pull/5

https://github.com/mehdigolzadeh/BoDeGHa/pull/25
https://github.com/ahmad-abdellatif/BotHunter/pull/5
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8.2. Limitations and discussions

8.2.1 GitHub API

This section discusses the limitations imposed by the GitHub REST API.
A first limitation of the GitHub REST API’s events endpoint relates to the lack of

reliability of the event payload details. For example, a PushEvent reports on the num-
ber of commits pushed through the size and distinct_size fields. Unfortunately,
the values indicated in these fields do not always correspond to the actual number
of commits that were pushed, likely because of rebasing and commit squashing. An-
other example is the merge status reported in a PullRequestEvent that sometimes
indicates that a pull request is merged when it is not (and vice versa). These perils
are well-known by the community involved in mining software repositories when min-
ing GitHub data (Kalliamvakou et al., 2014), and there is little we can do to address
them.

A second limitation is that, the events endpoint reports only the public events
performed by the contributors and not their activities in private repositories. So, we
can not capture the complete sequences of activities performed by GitHub contribu-
tors. For the same reason, we do now know the performance of the bot identification
approaches developed in this thesis on activities performed by contributors in private
repositories.

A third limitation is that, GitHub’s APIs are evolving over time. For example, the
event types reported by events endpoint includes a new event called DiscussionEvent
since 30th January 2025, and the event retention period has been reduced from 90
to 30 days. The studies and the results presented in this thesis is based on the
API restrictions that were in-place at the time when the studies were conducted,
specifically, it is based on API version 28-11-2022. Any change introduced by GitHub
in the future might make BIMBAS and RABBIT be unusable or non-reproducible in the
future. If the changes introduced by GitHub are not backward compatible, RABBIT
will not be executable. The BIMBAS model is robust to API changes as it is a trained
classification model that requires only the features based on contributor activities.

A fourth limitation is that, one can only obtain some details through the GitHub
GraphQL API. For example, contributor activity on Discussions can be obtained only
through the GraphQL API and not through the REST API. If one wants to develop a
new approach considering a wider range of contributor activities, one could consider
to use the GraphQL API. But depending on this API requires more API calls than
the REST API as the GraphQL API does not have the functionality to access all the
event types performed by a contributor in a single query.

8.2.2 Methodological limitations

This section details on the limitations that are based on the choices that were made
while conducting studies in this thesis.

A first limitation is that we did not consider so-called mixed accounts (Cassee
et al., 2021). Mixed accounts are GitHub user accounts that are shared between
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a human contributor and a bot contributor. In other words, mixed accounts are
GitHub accounts belonging to humans allowing automated tools to use their account
for performing certain tasks. Due to this mixed behaviour, we could not classify
them exclusively as a bot or a human contributor. Since our goal was to identify bot
contributors in GitHub, we removed such accounts from our ground-truth datasets
during the inter-rater agreement process.

A second limitation is that, in Chapter 4, for each contributor, we assigned equal
weights to all the predictions provided by BoDeGHa in different repositories. Alter-
natively, we could have provided a weight for each prediction, for example, based on
their number of activities in that particular repository. This might have changed the
performance of WoC-P. Also, we relied on wisdom of the crowd principle, in other
words a majority vote, to group the predictions and determine the type of contribu-
tor. Depending on smarter, rule based, or advanced grouping approaches could have
led to different performance scores.

A third limitation is the incomplete mapping of event types to activity types.
Chapter 5 provided this mapping by combining a maximum of two event types to
represent an activity type. However, some activity types can correspond to more than
two event types. For example, if a user merges a PR that is created from a branch
in the repository which is associated with an issue, then four events are generated:
PullRequestEvent (corresponding to closing the PR), PushEvent (merging the PR),
IssuesEvent (closing the associated issue), and DeleteEvent (deleting the branch from
which the PR is created). All these event types correspond to the single activity
closing PR.

Additionally, in Chapter 5, we relied on a two-second upper bound to consider if
two events belong to the same activity. The upper bound of two seconds is adopted
based on an experimental analysis of various event type combinations in the event
logs of GitHub contributors. For example, closing an issue with a comment corre-
sponds to a closing issue activity which is a combination of two events IssuesEvent
and IssueCommentEvent that occur within a time window of two seconds. Similarly,
merging a PR corresponds to a closing PR activity which is a combination of two
events PullRequestEvent and PushEvent. The timestamp of both events reported by
the events endpoint need to be within a time window of two seconds for us to consider
them as a single activity. If not, they will be mapped to two different activity types.
Adopting a different threshold might change the number of activities performed by
a contributor. For example, reducing the threshold to less than two seconds would
have led to more activities, as the number of event pairs might have reduced, and
vice-versa if the threshold is increased to more than two seconds.

Identifying activity types from event types without depending on time could lead
to a different number of activities. For example, one can just depend on PR number,
issue number, branch name, tag name and so on to identify activities rather than
keeping a threshold time to group events to a single activity type. Hourri et al.
(2025) addressed the second methodological limitation and discussions mentioned
above. They built further upon the mapping provided in Chapter 5 and created
a more fine-grained and higher-level mapping that captures activities performed by
contributors more accurately. Using a high threshold time, they combined multiple
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events to a single activity.
A fourth limitation is that we relied only on the events endpoint and did not

consider activity types that can only be obtained through additional endpoints. Most
of the contributor activities are captured by the events endpoint, but due to this
limitation, it is likely that we missed some activities preformed by contributors in
GitHub. For example, the issues endpoint provides issue-specific information such
as locking, unlocking and labelling issues. Similarly, pulls endpoint provides review-
specific information such as requested reviewers, review dismissals and so on. If
RABBIT would have relied on additional endpoints, it would have required more API
queries, more data to be downloaded, and more execution time.

8.3. Perspectives

This section proposes pathways for further exploration of ideas to continue this line
of research.

8.3.1 Datasets

To construct our ground-truth dataset, we relied on a limited set of data sources,
but with more time and effort thousands of contributors along with their ground-
truth (human or bot) could be added to the dataset. Updating the dataset with
emerging bots would be beneficial to have a more complete list of active bots in
GitHub. Additionally, considering contributors having a mixed behaviour would open
up to a third category of contributor type called mixed account in addition to the
existing bot and human. Having a dataset that includes bots, humans and mixed
accounts requires us to rely on multi-class classification models rather than binary
classifiers for predicting the type of contributor.

In Chapter 5 and Chapter 6, we manually created a ground-truth dataset of con-
tributors (bot or human). To reduce this manual effort, it would be interesting to use
AI techniques, such as Active Learning (Ren et al., 2021) for labelling contributors.
By adopting such techniques, one only needs to manually label certain contributors
that the model finds difficult to label. This would help in creating a larger dataset of
ground-truth contributors.

In Chapter 6, we had to obey GitHub’s REST API’s rate limitations as we relied
on contributor events obtained from the events endpoint to train BIMBAS. The data
that we can obtain in this way is less with the update made to the GitHub REST
API’s on 30th January 2025. This can be addressed by depending on Generative
AI techniques Gozalo-Brizuela & Merchan (2024). One can fine-tune Generative AI
models with events or activity sequences that contributors made in GitHub and can
prompt the model to generate more events or activities. For example, the model can
be used to generate event/activity sequences based on a scenario that is not present
in the dataset for training bot identification models.
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8.3.2 Bot identification approaches

Chapter 4 presented an ensemble bot identification model that performed better than
the considered bot identification approaches. Similarly, it is worthwhile to evaluate
if an ensemble model combining the strengths of the currently best performing bot
identification models (e.g., combining BotHunter and BIMBAS) leads to an even better
GitHub bot identification approach.

The BIMBAS bot identification model developed in this thesis does not favour any
contributor type (bot or human). It considers equal weights for both false positives
(incorrectly identifying humans as bots) and false negatives (incorrectly identifying
bots as humans). Providing different weights might be helpful in reducing either of
the false cases. For example, one could assign more weight to reduce false negatives
(e.g., by lowering the default probability threshold of 0.5). As bots are less in number
compared to humans in GitHub repositories, it will take less effort to manually check
and correct false positives compared to searching for bots in a big list of contribu-
tors determined as humans. The optimal probability threshold could be obtained by
performing a grid-search.

The existing bot identification approaches provide us only the prediction on the
type of contributors, except for RABBIT that additionally provides the confidence in
prediction as well. However, in the case of false negatives and false positives, it is
difficult to identify the reasons for the prediction by bot identification approaches.
This raises the need to use eXplainable AI (Lundberg & Lee, 2017) techniques to
understand and analyse the motivation for the model’s decisions. This analysis would
help one to identify the reasons for the model’s performance. For example, to enhance
the data accordingly.

In this thesis, we identified behavioural features based on our intuition and statisti-
cally verified that they could be used to differentiate bots from humans. Alternatively,
we can use other methods such as deep learning techniques (e.g., Recurrent Neural
Networks (Werbos, 1990), (Mienye et al., 2024)) that can accept activity sequences
and predict if a contributor is a bot or a human. Such AI techniques might capture
deeper insights, identify hidden features based on the behaviour of contributors in
GitHub and work based on those insights to predict the contributor type.

In this era of rapid improvements in AI and due to the rapid evolutionary nature
of software development, there can be some changes in the way in which GitHub au-
tomation mechanisms are used in the future. As bot identification models are trained
on current data using traditional machine learning methods, they might deteriorate
in performance as time passes. This brings the need to have a model that can fine-
tune and adapt itself to recent changes in GitHub contributor behaviour to identify
bot contributors. For this, one can depend on continual learning (Wang et al., 2024),
more specifically incremental learning (van de Ven et al., 2022) to learn over time
while retaining previously learned information.

As presented in Chapter 1, GitHub has millions of developers and the ground-
truth dataset of contributors that we considered in Chapter 6 is very limited. So,
in order to make the classification model learn from a set of labelled samples and
generalise well for the new samples, there is a need to depend on few-shot learning
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(Snell et al., 2017). This AI technique does not require large datasets for training
classifiers. Also, the model can be introduced to new classes with minimal labelled
data. For example, mixed account (with minimum number of contributors labelled
as mixed account) can be added to its training data and depending on the few-shot
learning technique, it can be fine-tuned (instead of re-training the entire model) to
identify contributors belonging to new class as well. As this approach does not need
much data for its training, time for identifying contributor ground-truth can be saved.

8.3.3 Empirical analyses

One of the major contribution of this thesis is that we developed multiple GitHub
bot identification approaches, which was only the first, yet important step to per-
form socio-technical and empirical studies that involves automation mechanisms in
GitHub. The next important steps consist of understanding, studying and improving
the usage of automation mechanisms in GitHub, and analysing how communities of
open-source software developers make use of these automation mechanisms to col-
laborate, communicate and interact to efficiently develop and maintain high-quality
software.

This dissertation just scratched the surface of empirical analysis that can be per-
formed to study the usage and behaviour of different automation mechanisms in a
large open-source software ecosystem. To better study their usage, behaviour and
roles in general, there is a need to perform more and larger scale studies, i.e., on
multiple software ecosystems, large collections of repositories, and so on.

To study the activities for which bot accounts are getting replaced by GitHub Apps
or internal automation services, it is interesting to perform an evolution analysis of
all automation mechanisms in GitHub. For example, one could analyse the number
of bots, GitHub Apps, GitHub Action workflows and internal automation services
that are used in one or many software ecosystems or a set of repositories for a period
of time, and observe the rate at which each automation mechanism is replaced by
another.

Another interesting study could be to identify the role of automation mechanisms
in GitHub. For example, one can identify if a bot is used for a specific activity or
for multiple activities. If it is used for multiple activities, one can study if it is used
for the same category of activities such as issues-related (e.g., opening an issue and
labelling an issue) or PR-related (e.g., closing a PR and commenting in a PR), or
it is used for automating tasks across different activity categories (e.g., commenting
issues and publishing releases). A possible extension of this study could be to anal-
yse the differences in behaviour of bots within a specific set of software ecosystems,
or a set of organisations with that of bots that are used in repositories that do not
belong to a single organisation or ecosystem. Such a study could help to identify if
bots used within organisations have a more predictable behaviour compared to that
of bots used in a set of unrelated repositories. Another difference could be in terms
of merged PRs. For this, empirical analaysis could be done to measure the difference
in PR acceptance rate between (i) PR created by an automation mechanism that is
used within the organisation/ecosystem to which the repository belongs to, and (ii)
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PR created by an automation mechanism that does not belong to that organisation/e-
cosystem. Similarly, differences in human-bot interaction in GitHub repositories that
belong to the same organisation/ecosystem and other unrelated repositories can be
analysed. This can enable one to analyse how developers are interacting with known
bots compared to that of unknown bots. This could pave the way for developers to
develop bots with strict guidelines for their user-friendly collaboration and optimised
usage.

We can use bot identification approaches to differentiate bots from humans and
perform a useful analysis on how humans are interacting with bots and vice-versa.
For example, to study what is the response time for bots when a human invokes it
through PR or issue comment, what is the response time for humans when a bot
mentions them in an issue or a PR, and so on. This study would highlight the quality
of interaction between humans and automated mechanisms, understand the team
dynamics and further help to assess the impact of bots in software repositories.

This dissertation considered activities performed by contributors only in GitHub.
One can consider the contributor activities in other collaborative development plat-
forms (e.g., GitLab, Gitea or BitBucket). Although such platforms are mostly based
on the same principles of GitHub, there could be differences in activity pace, activity
types of contributors, and the ways in which automation mechanisms are used to per-
form activities. The studies performed in this thesis can be repeated to other social
coding platforms to observe the differences in usage of bots.
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